cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046346 Composite numbers that are divisible by the sum of their prime factors (counted with multiplicity).

Original entry on oeis.org

4, 16, 27, 30, 60, 70, 72, 84, 105, 150, 180, 220, 231, 240, 256, 286, 288, 308, 378, 440, 450, 476, 528, 540, 560, 576, 588, 594, 624, 627, 646, 648, 650, 728, 800, 805, 840, 884, 897, 900, 945, 960, 1008, 1040, 1056, 1080, 1100, 1122, 1134, 1160, 1170, 1248
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Comments

If m is in the sequence and d|m, then m^d is also a term. Note that this sequence contains all infinite subsequences of the form p^(p^k) for k>0, where p is a prime. - Amiram Eldar and Thomas Ordowski, Feb 06 2019
If one selects some composite k, k >= 8, and decomposes (k - sopfr(k)) into an additive partition having only prime parts, then those parts, when taken as a product with k, yield an element of this sequence. - Christopher Hohl, Jul 30 2019

Examples

			a(38) = 884 = 2 * 2 * 13 * 17 -> 2 + 2 + 13 + 17 = 34 so 884 / 34 = 26.
		

Crossrefs

Programs

  • MATLAB
    m=1;for u=2:1200 if and(isprime(u)==0,mod(u,sum(factor(u)))==0); sol(m)=u; m=m+1; end; end;sol % Marius A. Burtea, Jul 31 2019
    
  • Magma
    [k:k in [2..1200]| not IsPrime(k) and  k mod (&+[m[1]*m[2]: m in Factorization(k)]) eq 0]; // Marius A. Burtea, Jul 31 2019
    
  • Maple
    isA046346 := proc(n)
        if isprime(n) then
            false;
        elif modp(n,A001414(n)) = 0 then
            true;
        else
            false;
        end if;
    end proc:
    for n from 2 to 1000 do
        if isA046346(n) then
            printf("%d,",n);
        end if;
    end do: # R. J. Mathar, Jan 12 2016
  • Mathematica
    Select[Range[2,1170],!PrimeQ[#]&&IntegerQ[#/Total[Times@@@FactorInteger[#]]]&] (* Jayanta Basu, Jun 02 2013 *)
  • PARI
    sopfr(n) = {my(f=factor(n)); sum(k=1, #f~, f[k,1]*f[k,2]);}
    lista(nn) = forcomposite(n=2, nn, if (! (n % sopfr(n)), print1(n, ", "));); \\ Michel Marcus, Jan 06 2016
    
  • Python
    from sympy import factorint
    def ok(n):
      f = factorint(n)
      return sum(f[p] for p in f) > 1 and n % sum(p*f[p] for p in f) == 0
    print(list(filter(ok, range(1250)))) # Michael S. Branicky, Apr 16 2021

Extensions

Description corrected by Robert A. Stump (bee_ess107(AT)yahoo.com), Jan 09 2002