A046346 Composite numbers that are divisible by the sum of their prime factors (counted with multiplicity).
4, 16, 27, 30, 60, 70, 72, 84, 105, 150, 180, 220, 231, 240, 256, 286, 288, 308, 378, 440, 450, 476, 528, 540, 560, 576, 588, 594, 624, 627, 646, 648, 650, 728, 800, 805, 840, 884, 897, 900, 945, 960, 1008, 1040, 1056, 1080, 1100, 1122, 1134, 1160, 1170, 1248
Offset: 1
Keywords
Examples
a(38) = 884 = 2 * 2 * 13 * 17 -> 2 + 2 + 13 + 17 = 34 so 884 / 34 = 26.
Links
- François Huppé, Table of n, a(n) for n = 1..50000 (terms 1..1000 from T. D. Noe)
- K. Alladi and P. Erdős, On an additive arithmetic function, Pacific J. Math., Volume 71, Number 2 (1977), 275-294. See "special numbers" on page 287.
Programs
-
MATLAB
m=1;for u=2:1200 if and(isprime(u)==0,mod(u,sum(factor(u)))==0); sol(m)=u; m=m+1; end; end;sol % Marius A. Burtea, Jul 31 2019
-
Magma
[k:k in [2..1200]| not IsPrime(k) and k mod (&+[m[1]*m[2]: m in Factorization(k)]) eq 0]; // Marius A. Burtea, Jul 31 2019
-
Maple
isA046346 := proc(n) if isprime(n) then false; elif modp(n,A001414(n)) = 0 then true; else false; end if; end proc: for n from 2 to 1000 do if isA046346(n) then printf("%d,",n); end if; end do: # R. J. Mathar, Jan 12 2016
-
Mathematica
Select[Range[2,1170],!PrimeQ[#]&&IntegerQ[#/Total[Times@@@FactorInteger[#]]]&] (* Jayanta Basu, Jun 02 2013 *)
-
PARI
sopfr(n) = {my(f=factor(n)); sum(k=1, #f~, f[k,1]*f[k,2]);} lista(nn) = forcomposite(n=2, nn, if (! (n % sopfr(n)), print1(n, ", "));); \\ Michel Marcus, Jan 06 2016
-
Python
from sympy import factorint def ok(n): f = factorint(n) return sum(f[p] for p in f) > 1 and n % sum(p*f[p] for p in f) == 0 print(list(filter(ok, range(1250)))) # Michael S. Branicky, Apr 16 2021
Extensions
Description corrected by Robert A. Stump (bee_ess107(AT)yahoo.com), Jan 09 2002
Comments