A046459 Dudeney numbers: integers equal to the sum of the digits of their cubes.
0, 1, 8, 17, 18, 26, 27
Offset: 1
Examples
a(3) = 8 because 8^3 = 512 and 5 + 1 + 2 = 8. a(7) = 27 because 27^3 = 19683 and 1 + 9 + 6 + 8 + 3 = 27.
References
- H. E. Dudeney, 536 Puzzles & Curious Problems, reprinted by Souvenir Press, London, 1968, p. 36, #120.
- Italo Ghersi, Matematica dilettevole e curiosa, p. 115, Hoepli, Milano, 1967. [From Vincenzo Librandi, Jan 02 2009]
- F. Le Lionnais, Les nombres remarquables, Hermann, 1983.
- J. Roberts, Lure of the Integers, The Mathematical Association of America, 1992, p. 172.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 96.
Links
- H. E. Dudeney, 536 Puzzles & Curious Problems.
- The Mathematics Teacher, October 2018 Calendar and Solutions, Volume 112, Number 2, October 2018, pages 120 and 122.
- ProofWiki, Sequence of Dudeney Numbers.
- Bernard Schott and Norbert Verdier, QDL 19: Quels beaux cubes! (French mathematical forum les-mathematiques.net).
- Eric Weisstein's World of Mathematics, Cubic Number.
Programs
-
Magma
[n: n in [0..100] | &+Intseq(n^3) eq n ]; // Vincenzo Librandi, Sep 16 2015
-
Mathematica
Select[Range[0,30],#==Total[IntegerDigits[#^3]]&] (* Harvey P. Dale, Dec 21 2014 *)
-
PARI
isok(k)=sumdigits(k^3)==k \\ Patrick De Geest, Dec 10 2024
-
Python
a = [n for n in range(100) if sum(map(int, str(n ** 3))) == n] # David Radcliffe, Aug 18 2022
Extensions
Offset corrected by Arkadiusz Wesolowski, Aug 09 2013
Comments