cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A046488 Palindromes that are the sum of the first n palindromes for some n.

Original entry on oeis.org

1, 3, 6, 111, 353, 7557, 2376732
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1998

Keywords

Comments

No additional terms up through the partial sums of all palindromes less than or equal to 10^7-1. - Harvey P. Dale, Jun 23 2018

Examples

			a(4) = 111 as 111 = 1+2+3+4+5+6+7+8+9+11+22+33.
		

Crossrefs

Programs

  • Mathematica
    palQ[n_] := Reverse[x = IntegerDigits[n]] == x; Select[Accumulate[Select[Range[25000], palQ]], palQ] (* Jayanta Basu, Jun 26 2013 *)
    Select[Accumulate[Select[Range[10^6],PalindromeQ]],PalindromeQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 23 2018 *)

Formula

a(n) = A046489(A046486(n)-1). - R. J. Mathar, Sep 09 2015

Extensions

Edited by Jonathan Sondow, Nov 28 2017

A046487 Palindromes k such that the sum of the first palindromes up to k is a palindrome.

Original entry on oeis.org

1, 2, 3, 33, 77, 383, 21512
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1998

Keywords

Examples

			a(n)=77 so 1+2+3+4+5+6+7+8+9+11+22+33+44+55+66+77 = 353.
		

Crossrefs

Formula

a(n) = A002113(1+A046486(n)). - R. J. Mathar, Sep 09 2015

Extensions

Offset changed to 1 by R. J. Mathar, Sep 09 2015

A091584 Number of partitions of the n-th decimal palindrome into decimal palindromes.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 55, 788, 5747, 28915, 114064, 378823, 1105429, 2916219, 7093435, 8275126, 17341313, 34721974, 66837990, 124308827, 224290376, 393929311, 675393430, 1133103539, 1864009161, 3157186031, 5011108578, 7836124010, 12086660443
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 22 2004

Keywords

Comments

a(n) = A091580(A002113(n)).

Crossrefs

Extensions

More terms from Alois P. Heinz, Nov 13 2018
Showing 1-3 of 3 results.