cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A145771 Record values in A046641.

Original entry on oeis.org

1, 2, 3, 11, 14, 21, 28, 54, 58, 66, 94, 129, 178, 340, 348, 372, 465, 960, 968, 995, 1453, 2037, 2088, 2309, 2620, 3978, 4873, 5307, 8149, 9441, 9590, 10669, 10919, 15687, 18908, 23136, 24023, 27058, 27564, 29623, 37756, 38010, 42187, 56154, 65761
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2008

Keywords

Comments

RECORDS transform of A046641: values A046641(k) larger than all A046641(m) for mA046641.

Crossrefs

A145772 gives corresponding indices of A046641 (cf. formula).

Formula

a(n) = A046641( A145772(n))

A145772 Indices of record values in A046641.

Original entry on oeis.org

1, 2, 3, 4, 9, 12, 13, 17, 20, 32, 34, 39, 51, 54, 102, 126, 144, 163, 247, 258, 306, 326, 489, 563, 613, 657, 1112, 1123, 1334, 1409, 1913, 2494, 2518, 2703, 3548, 3672, 3798, 4481, 5905, 6014, 6186, 6581, 6759, 8543, 8893, 9453, 11892, 12708, 15346, 17183
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2008

Keywords

Comments

Indices k such that A046641(k) > A046641(m) for all m < k. Computed using the C program for A046641.

Crossrefs

A145771(n) = A046641( a(n)) gives the corresponding record values.

Programs

  • sh
    i=1; c=1; m=0; while [ $c -le 50 ]; do if [ `./A046641 $i` -gt $m ]; then m=`./A046641 $i`; echo -n $i", "; c=`expr $c + 1`; fi; i=`expr $i + 1`; done

A091690 Smallest integer m such that the n-th prime A000040(n) divides partition number A000041(m).

Original entry on oeis.org

2, 3, 4, 5, 6, 28, 54, 20, 32, 26, 44, 86, 35, 27, 56, 52, 54, 115, 47, 43, 46, 123, 29, 25, 44, 13, 78, 96, 320, 63, 40, 73, 66, 60, 333, 203, 116, 960, 22, 79, 368, 310, 75, 41, 118, 59, 100, 64, 55, 115, 316, 353, 46, 23, 197, 236, 193, 871, 179, 37, 95, 183, 233
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 29 2004

Keywords

Comments

See A091689 for comment, links and example: A091689(n) = A000041(a(n)).

Examples

			a(10) = 26 as the 10th prime divides the 26th partition number, i.e., prime(10) = 29 | 2436 = A000041(26) and no smaller partition number is a multiple of 29. - _David A. Corneth_, Jan 05 2023
		

Programs

  • PARI
    forprime(p=2,400,n=2:while(numbpart(n)%p,n=n+1):print1(n","))
    
  • PARI
    first(n) = { my(res = vector(n, i, oo), todo = [1..n], pr = Set(primes(n)), prmap = Map()); for(i = 1, n, mapput(prmap, pr[i], todo[i]) ); for(i = 1, oo, c = numbpart(i); j = 1; while(j <= #pr && pr[j] <= c, if(c % pr[j] == 0, res[mapget(prmap, pr[j])] = i; pr = setminus(pr, Set(pr[j])); ); j++ ); if(#pr == 0, return(res) ) ); res } \\ David A. Corneth, Jan 05 2023
    
  • sh
    i=2; c=1; while [ $i -le 20000 ]; do if [ `factor $i | wc -w` = 2 ]; then awk '/^'$i' / {print "'$c' " $2;exit}' b046641.txt; let c+=1; if [ $i = 2 ]; then i=1; fi; fi; let i+=2; done # M. F. Hasler, Oct 20 2008

Formula

a(n) = A046641(A000040(n)). - M. F. Hasler, Oct 20 2008

Extensions

Corrected by Ralf Stephan, Jul 27 2004

A145523 Least integer k > 0 such that A000041(k) is divisible by 2^n.

Original entry on oeis.org

1, 2, 11, 11, 15, 66, 66, 96, 96, 96, 96, 96, 3693, 15005, 18978, 18978, 18978, 43002, 55943, 972190, 1151214, 2799146, 15519397, 15519397, 15519397, 122101417, 210553237, 289585489, 473093534
Offset: 0

Views

Author

M. F. Hasler, Oct 12 2008

Keywords

Comments

The requirement a(n) > 0 is somewhat arbitrary, chosen for agreement with A046641; a(n) >= 0 would have been possible, too, yielding a(0)=0.
a(29) > 10^9.

Crossrefs

Programs

  • sh
    i=1; c=1; while [ $c -le 21 ]; do echo -n `./A046641 $i`", "; c=`expr $c + 1`; i=`expr $i + $i`; done # M. F. Hasler, Oct 18 2008

Formula

a(n) = A046641(2^n).

Extensions

More terms from M. F. Hasler, Oct 18 2008
a(22)-a(28) from Max Alekseyev, Dec 16 2011

A235704 a(n) is the smallest number k such that n*k is a partition number.

Original entry on oeis.org

1, 1, 1, 14, 1, 5, 1, 7, 15, 3, 1, 66, 286, 3, 1, 11, 22715, 44, 33, 35761, 2, 1, 363, 33, 63, 143, 5, 2, 84, 1, 2425, 72610, 7, 2725580, 11, 22, 926026, 3283, 123981330, 58088, 363, 1, 70, 4, 3, 176484, 11209, 85166, 10, 141790, 11209835405
Offset: 1

Views

Author

Omar E. Pol, Jan 14 2014

Keywords

Examples

			For n = 4, a(4) = 14 because if 1 <= k <= 13 we have that 4*k is not a partition number, but if k = 14 then 4*14 = 56 and 56 is the number of partitions of 11.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := PartitionsP[NestWhile[(# + 1)&, 1, Mod[PartitionsP@ #, n] > 0 &]]/n; Array[a,51] (* Giovanni Resta, Jan 15 2014 *)

Formula

a(n) = 1 iff n is a partition number.
a(n) = A072871(n)/n.

A324060 Smallest positive index m such that A000009(m) is divisible by n.

Original entry on oeis.org

1, 3, 5, 6, 7, 8, 33, 9, 13, 10, 14, 11, 23, 33, 12, 16, 31, 13, 17, 31, 40, 14, 18, 27, 65, 23, 15, 33, 52, 32, 42, 16, 26, 31, 41, 38, 28, 17, 32, 37, 112, 41, 149, 79, 35, 18, 121, 27, 203, 65, 49, 23, 40, 19, 26, 33, 87, 52, 50, 41, 24, 42, 41, 20, 32, 79
Offset: 1

Views

Author

Robert G. Wilson v, Jul 31 2019

Keywords

Comments

Analogous to A046641.

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
         `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    a:= proc(n) local k; for k while irem(b(k), n)>0 do od; k end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Aug 17 2019
  • Mathematica
    t[] := 0; k = 1; f[n] := Block[{p = PartitionsQ@n, lst}, lst = Select[Range@100, Mod[p, #] == 0 &]; If[t[#] == 0, t[#] = n] & /@ lst]; While[k < 1001, f[k]; k++]; t@# & /@ Range@100

A086146 a(n) is the smallest k>=n such that the number of partitions of k is a multiple of n, or -1 if no such k exists.

Original entry on oeis.org

1, 2, 3, 11, 7, 9, 10, 11, 14, 19, 12, 21, 28, 19, 24, 66, 54, 21, 20, 58, 24, 25, 32, 70, 44, 28, 39, 55, 91, 97, 44, 66, 35, 94, 39, 80, 86, 47, 129, 66, 45, 75, 100, 58, 129, 75, 56, 70, 68, 74, 178, 62, 66, 340, 58, 75, 209, 97, 93, 124, 115, 101, 138, 66, 84, 75, 111, 94
Offset: 1

Views

Author

Jim Nastos, Aug 25 2003

Keywords

Comments

I do not know if a(n) exists for all n. First term which is currently unknown is a(2219) (a(2219) > 11600, while a(2218) = 2602).

Examples

			a(4) is 11 because 11 is the smallest number for which P(11) is divisible by 4, where P() is the partition function.
		

Crossrefs

Cf. A046641.

Programs

  • Maple
    for i from 2 while i < 30000 do for j from i while j < 1000000000 do c := numbpart(j); if (c mod i = 0) then print(i,j); break; end if; end do; end do;
    # alternative
    A086146 := proc(n)
        local k ;
        for k from n do
            if combinat[numbpart](k) mod n =0 then
                return k;
            end if;
        end do:
    end proc: # R. J. Mathar, Apr 22 2013
  • Mathematica
    kmax = 10^9;
    a[n_] := Module[{k}, For[k = n, k <= kmax, k++, If[Divisible[ PartitionsP[k], n], Return[k]]]] /. Null -> -1;
    Table[a[n], {n, 1, 68}] (* Jean-François Alcover, Jul 08 2024 *)

Extensions

More terms from Ray Chandler, Sep 16 2003

A145524 Least integer k>0 such that A000041(k) is divisible by 10^n.

Original entry on oeis.org

1, 9, 74, 449, 599, 11224, 55374, 3099324, 3099324
Offset: 0

Views

Author

M. F. Hasler, Oct 12 2008

Keywords

Comments

The requirement a(n)>0 is somewhat arbitrary, chosen for agreement with A046641 ; a(n)>=0 would have been possible, too, yielding a(0)=0.
a(9) > 10^7. [From Max Alekseyev, Oct 18 2008]

Crossrefs

Formula

a(n) = A046641(10^n)

Extensions

a(6)..a(8) from Max Alekseyev, Oct 18 2008

A307547 a(n) is the smallest divisor of the partition number P(n) = A000041(n) not already in the sequence.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 15, 22, 6, 14, 4, 77, 101, 9, 8, 21, 27, 35, 10, 19, 12, 167, 251, 25, 89, 28, 43, 13, 55, 467, 311, 23, 49, 1231, 33, 17977, 281, 121, 45, 42, 193, 2417, 71, 31, 41, 73, 38, 7013, 275, 9283, 363, 53, 63, 17, 142, 47, 102359, 20, 44, 139
Offset: 1

Views

Author

Rémy Sigrist, Jul 27 2019

Keywords

Comments

Provided A046641(m) is defined for any number m > 0, this sequence is a permutation of the natural numbers.

Examples

			The first terms, alongside the divisors of P(n), are:
  n   a(n)  div(P(n))
  --  ----  --------------------
   1     1  (1)
   2     2  (1, 2)
   3     3  (1, 3)
   4     5  (1, 5)
   5     7  (1, 7)
   6    11  (1, 11)
   7    15  (1, 3, 5, 15)
   8    22  (1, 2, 11, 22)
   9     6  (1, 2, 3, 5, 6, 10, 15, 30)
  10    14  (1, 2, 3, 6, 7, 14, 21, 42)
		

Crossrefs

Programs

  • PARI
    See Links section.

Formula

a(A049575(k)) = A049575(k).
Showing 1-9 of 9 results.