A046660 Excess of n = number of prime divisors (with multiplicity) - number of prime divisors (without multiplicity).
0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 3, 0, 1, 0, 1, 0, 0, 0, 2, 1, 0, 2, 1, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 3, 1, 1, 0, 1, 0, 2, 0, 2, 0, 0, 0, 1, 0, 0, 1, 5, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 1, 1, 0, 0, 0, 3, 3, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 4, 0, 1, 1, 2, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0
Offset: 1
References
- G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, pp. 51-52.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Mark Kac, Statistical Independence in Probability, Analysis and Number Theory, Carus Monograph 12, Math. Assoc. Amer., 1959, see p. 64.
Crossrefs
Programs
-
Haskell
import Math.NumberTheory.Primes.Factorisation (factorise) a046660 n = sum es - length es where es = snd $ unzip $ factorise n -- Reinhard Zumkeller, Nov 28 2015, Jan 09 2013
-
Maple
with(numtheory); A046660 := n -> bigomega(n)-nops(factorset(n)): seq(A046660(k), k=1..100); # Wesley Ivan Hurt, Oct 27 2013 # Or: with(NumberTheory): A046660 := n -> NumberOfPrimeFactors(n) - NumberOfPrimeFactors(n, 'distinct'): # Peter Luschny, Jul 14 2023
-
Mathematica
Table[PrimeOmega[n] - PrimeNu[n], {n, 50}] (* or *) muf[n_] := Module[{fi = FactorInteger[n]}, Total[Transpose[fi][[2]]] - Length[fi]]; Array[muf, 50] (* Harvey P. Dale, Sep 07 2011. The second program is several times faster than the first program for generating large numbers of terms. *)
-
PARI
a(n)=bigomega(n)-omega(n) \\ Charles R Greathouse IV, Nov 14 2012
-
PARI
a(n)=my(f=factor(n)[,2]); vecsum(f)-#f \\ Charles R Greathouse IV, Aug 01 2016
-
Python
from sympy import factorint def A046660(n): return sum(e-1 for e in factorint(n).values()) # Chai Wah Wu, Jul 18 2023
Formula
Additive with a(p^e) = e - 1.
G.f.: Sum_{p prime, k>=2} x^(p^k)/(1 - x^(p^k)). - Ilya Gutkovskiy, Jan 06 2017
Asymptotic mean: lim_{m->oo} (1/m) Sum_{k=1..m} a(k) = Sum_{p prime} 1/(p*(p-1)) = 0.773156... (A136141). - Amiram Eldar, Jul 28 2020
a(n) = Sum_{p|n} A286563(n/p,p), where p is prime. - Ridouane Oudra, Sep 13 2023
Extensions
More terms from David W. Wilson
Comments