cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A046679 Numbers k such that the number of divisors of k and sum of squares of divisors of k are relatively prime.

Original entry on oeis.org

1, 2, 8, 9, 16, 18, 64, 72, 81, 128, 144, 625, 729, 1024, 1152, 1296, 1458, 2401, 4096, 5184, 5625, 5832, 6561, 8192, 9216, 10000, 11664, 13122, 15625, 21609, 28561, 31250, 32768, 38416, 40000, 46656, 50625, 52488, 59049, 65536, 83521, 90000
Offset: 1

Views

Author

Keywords

Comments

It can be shown that this is a subsequence of A028982.

Crossrefs

Programs

  • Mathematica
    Select[Range[91000],CoprimeQ[DivisorSigma[0,#], DivisorSigma[2,#]]&] (* Harvey P. Dale, May 11 2011 *)
  • PARI
    isok(n) = gcd(sigma(n, 2), numdiv(n)) == 1; \\ Michel Marcus, Sep 24 2019

Extensions

a(1)=1 added by Amiram Eldar, Sep 24 2019

A046680 Numbers k such that the number of divisors of k and sum of cubes of divisors of k are relatively prime.

Original entry on oeis.org

1, 2, 4, 8, 9, 16, 25, 36, 81, 100, 121, 128, 144, 162, 225, 256, 289, 324, 400, 484, 512, 529, 625, 729, 841, 900, 1024, 1089, 1156, 1250, 1296, 1458, 1681, 1936, 2025, 2116, 2209, 2304, 2401, 2500, 2601, 2809, 2916, 3025, 3364, 3481, 3600, 4096, 4356, 4624
Offset: 1

Views

Author

Keywords

Comments

It can be shown that this is a subsequence of A028982.

Crossrefs

Programs

  • Mathematica
    Select[Range[5000], CoprimeQ[DivisorSigma[0, #], DivisorSigma[3, #]] &] (* Amiram Eldar, Aug 08 2019 *)
  • PARI
    isok(n) = gcd(numdiv(n), sigma(n, 3)) == 1; \\ Michel Marcus, Sep 24 2019

A046681 Numbers k such that the number of divisors of k and sum of 4th powers of divisors of k are relatively prime.

Original entry on oeis.org

1, 2, 8, 9, 18, 64, 72, 128, 625, 729, 1024, 1152, 1250, 1458, 4096, 5000, 5625, 5832, 6561, 8192, 9216, 11250, 13122, 15625, 31250, 32768, 40000, 45000, 46656, 52488, 59049, 65536, 80000, 93312, 117649, 118098, 125000, 235298, 262144, 294912
Offset: 1

Views

Author

Keywords

Comments

It can be shown that this is a subsequence of A028982.

Crossrefs

Programs

  • Mathematica
    Select[Range[300000],CoprimeQ[DivisorSigma[0,#],DivisorSigma[4,#]]&] (* Harvey P. Dale, May 30 2012 *)
  • PARI
    isok(n) = gcd(sigma(n, 4), numdiv(n)) == 1; \\ Michel Marcus, Sep 24 2019

A046683 Numbers k such that the sum of squares of divisors of k and sum of cubes of divisors of k are relatively prime.

Original entry on oeis.org

1, 2, 4, 9, 18, 25, 36, 100, 121, 225, 289, 484, 529, 841, 900, 1089, 1156, 1681, 2116, 2209, 2601, 2809, 3364, 3481, 4356, 4761, 5041, 6724, 6889, 7225, 7569, 7921, 8836, 10201, 10404, 11236, 11449, 12769, 13225, 13924, 15129, 17161, 18769, 19044
Offset: 1

Views

Author

Keywords

Comments

It can be shown that this is a subsequence of A028982.

Crossrefs

Programs

  • Mathematica
    sdcdQ[n_]:=Module[{d=Divisors[n]},CoprimeQ[Total[d^2],Total[d^3]]]; Select[ Range[ 20000],sdcdQ] (* Harvey P. Dale, Apr 09 2018 *)
  • PARI
    isok(n) = gcd(sigma(n, 2), sigma(n, 3)) == 1; \\ Michel Marcus, Sep 24 2019

A046685 Numbers k such that the sum of cubes of divisors of k and the sum of 4th powers of divisors of k are relatively prime.

Original entry on oeis.org

1, 2, 4, 8, 9, 18, 25, 100, 121, 225, 289, 484, 529, 841, 1089, 1156, 1681, 2116, 2209, 2601, 2809, 3364, 3481, 4761, 5041, 6724, 6889, 7225, 7569, 7921, 8836, 10201, 11236, 11449, 12769, 13225, 13924, 15129, 17161, 18769, 19881, 20164, 21025
Offset: 1

Views

Author

Keywords

Comments

It can be shown that this is a subsequence of A028982.
From Robert Israel, Jul 09 2018: (Start)
The only terms that are not in A062503 are 2, 8 and 18.
No term is divisible by a term of A002476.
p^2 is a term for every p in A003627. (End)

Crossrefs

Programs

  • Maple
    N:= 10^6: # to get all terms <= N
    sort(select(filter, [seq(t^2,t=1..isqrt(N)),seq(2*t^2,t=1..isqrt(N/2))])); # Robert Israel, Jul 09 2018
  • Mathematica
    Select[Range[25000], CoprimeQ[DivisorSigma[3, #], DivisorSigma[4, #]] &] (* Michael De Vlieger, Aug 10 2023 *)
  • PARI
    isok(n) = gcd(sigma(n, 3), sigma(n, 4)) == 1; \\ Michel Marcus, Sep 24 2019

A225983 Numbers k such that gcd(phi(k), tau(k)) = 1.

Original entry on oeis.org

1, 2, 4, 16, 25, 64, 81, 100, 121, 256, 289, 484, 529, 729, 841, 1024, 1156, 1296, 1600, 1681, 2116, 2209, 2401, 2809, 3025, 3364, 3481, 4096, 4624, 5041, 5184, 6400, 6724, 6889, 7225, 7744, 7921, 8464, 8836, 10201, 11236, 11449, 11664, 12100, 12769, 13225
Offset: 1

Views

Author

Paolo P. Lava, May 22 2013

Keywords

Examples

			If n = 13924 then phi(n) = 6844 = 2^2*29*59 and tau(n) = 9 = 3^2. There is no common prime factor.
		

Crossrefs

Programs

  • Maple
    with(numtheory); A225983:=proc(q) local n;
    for n from 1 to q do if gcd(tau(n),phi(n))=1 then print(n);
    fi; od; end: A225983(10^6);
  • Mathematica
    t = {}; n = 0; While[Length[t] < 100, n++; If[GCD[EulerPhi[n], DivisorSigma[0, n]] == 1, AppendTo[t, n]]]; t (* T. D. Noe, May 22 2013 *)

A330606 Numbers k such that k*d(k) and sigma(k) are relatively prime, where d(k) is the number of divisors of k (A000005) and sigma(k) is their sum (A000203).

Original entry on oeis.org

1, 2, 4, 8, 9, 16, 25, 36, 64, 81, 100, 121, 128, 144, 225, 256, 289, 324, 400, 484, 512, 529, 576, 625, 729, 841, 900, 1024, 1089, 1156, 1250, 1296, 1600, 1681, 1936, 2025, 2116, 2209, 2304, 2401, 2500, 2601, 2809, 3025, 3364, 3481, 3600, 4096, 4356, 4624, 4761
Offset: 1

Views

Author

Amiram Eldar, Dec 20 2019

Keywords

Comments

If p is prime and p == 2 (mod 3) then p^2 is in the sequence.
Let E(x) = #{n | a(n) <= x} be the number of terms of this sequence up to x. Kanold proved that there are two constants 0 < c1 < c2 and a positive number x_0 such that c1 < E(x)/sqrt(x/log(x)) < c2 for x > x_0. De Koninck and Kátai proved that there is a positive constant c such that E(x) = c * (1 + o(1)) * sqrt(x/log(x)).
Apparently most of the terms are squares or powers of 2. Terms that are not included 1250, 4802, 31250, 57122, ...
Numbers k such that A099377(k) = A038040(k) and A099378(k) = A000203(k). - Amiram Eldar, Nov 02 2021

References

  • József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, page 75.

Crossrefs

Programs

  • Magma
    [k:k in [1..5000]| Gcd(k*NumberOfDivisors(k),DivisorSigma(1,k)) eq 1]; // Marius A. Burtea, Dec 20 2019
  • Mathematica
    Select[Range[10^4], CoprimeQ[# * DivisorSigma[0, #], DivisorSigma[1, #]] &]

A298080 Integers m such that both phi(m) and sigma(m) are coprime to tau(m).

Original entry on oeis.org

1, 2, 4, 16, 25, 64, 81, 100, 121, 256, 289, 484, 529, 729, 841, 1024, 1156, 1296, 1600, 1681, 2116, 2209, 2401, 2809, 3025, 3364, 3481, 4096, 4624, 5041, 5184, 6400, 6724, 6889, 7225, 7921, 8464, 8836, 10201, 11236, 11449, 11664, 12100, 12769, 13225, 13456, 13924
Offset: 1

Views

Author

Michel Marcus, Jan 12 2018

Keywords

Crossrefs

Intersection of A046678 and A225983.

Programs

  • Mathematica
    Select[Range[14000], CoprimeQ[EulerPhi[#], (d = DivisorSigma[0, #])] && CoprimeQ[DivisorSigma[1, #], d] &] (* Amiram Eldar, Aug 08 2020 *)
  • PARI
    isok(n) = (gcd(eulerphi(n), numdiv(n))==1) && (gcd(sigma(n), numdiv(n)) == 1);
Showing 1-8 of 8 results.