A046682 Number of cycle types of conjugacy classes of all even permutations of n elements.
1, 1, 1, 2, 3, 4, 6, 8, 12, 16, 22, 29, 40, 52, 69, 90, 118, 151, 195, 248, 317, 400, 505, 632, 793, 985, 1224, 1512, 1867, 2291, 2811, 3431, 4186, 5084, 6168, 7456, 9005, 10836, 13026, 15613, 18692, 22316, 26613, 31659, 37619, 44601, 52815, 62416, 73680, 86809, 102162
Offset: 0
Examples
1 + x + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 6*x^6 + 8*x^7 + 12*x^8 + 16*x^9 + ... a(3)=2 since cycle types of even permutations of 3 elements is (.)(.)(.), (...). a(4)=3 since cycle types of even permutations of 4 elements is (.)(.)(.)(.), (...)(.), (..)(..). a(5)=4 (free Young diagrams): XXXXX XXXX. XXX.. XXX.. ..... X.... XX... X.... ..... ..... ..... X.... ..... ..... ..... ..... ..... ..... ..... .....
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
- George E. Andrews, David Newman, The Minimal Excludant in Integer Partitions, J. Int. Seq., Vol. 23 (2020), Article 20.2.3.
- J. Huh and B. Kim, The number of equivalence classes arising from partition involutions, Int. J. Number Theory, 16 (2020), 925-939.
- M. Osima, On the irreducible representations of the symmetric group, Canad. J. Math., 4 (1952), 381-384.
- Sheila Sundaram, On a positivity conjecture in the character table of S_n, arXiv:1808.01416 [math.CO], 2018.
Crossrefs
Programs
-
Maple
seq(add((-1)^(n-k)*combinat:-numbpart(n,k),k=0..n),n=0..48); # Peter Luschny, Aug 03 2015
-
Mathematica
max = 48; f[q_] := Sum[(-q^2)^n^2, {n, 0, max}]/Product[1-q^n, {n, 1, max}]; CoefficientList[ Series[f[q], {q, 0, max}], q] (* Jean-François Alcover, Oct 18 2011, after g.f. *) conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; Table[Length[Select[IntegerPartitions[n],Times@@Prime/@#>=Times@@Prime/@conj[#]&]],{n,0,15}] (* Gus Wiseman, Mar 31 2022 *)
-
PARI
list(lim)=my(q='q);Vec(sum(n=0,sqrt(lim),(-q^2)^(n^2))/prod(n=1,lim,1-q^n)+O(q^(lim\1+1))) \\ Charles R Greathouse IV, Oct 18 2011
-
PARI
{a(n) = if( n<0, 0, (numbpart(n) + polcoeff( 1 / prod( k=1, n, 1 + (-x)^k, 1 + x * O(x^n)), n)) / 2)} /* Michael Somos, Jul 24 2012 */
Formula
G.f.: Sum_{n>=0} (-q^2)^(n^2) / Product_{m>=1} (1-q^m ) = ( 1/Product_{m>=1} (1-q^m) + Product_{m>=1} (1+q^(2*m-1) ) ) / 2. - Mamuka Jibladze, Sep 07 2003
Comments