cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046776 Number of partitions of 5n with equal number of parts congruent to each of 0, 1, 2, 3 and 4 (mod 5).

Original entry on oeis.org

1, 0, 0, 1, 5, 15, 36, 75, 146, 271, 495, 891, 1601, 2851, 5051, 8851, 15362, 26331, 44642, 74787, 123991, 203433, 330717, 532872, 851779, 1351147, 2128324, 3330059, 5177768, 8002170, 12296754, 18791945, 28566751, 43204575, 65022987, 97395386, 145217908
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of m with equal numbers of parts congruent to each of 1, 2, 3 and 4 (mod 5) is 0 unless m == 0 mod 5.

Crossrefs

Programs

  • Maple
    mkl:= proc(i,l) local ll, mn, ii, x; ii:= irem(i,5); ii:= `if`(ii=0, 5, ii); ll:= applyop(x->x+1, ii, l); mn:= min(l[]); `if`(mn=0, ll, map (x->x-mn, ll)) end:
    g:= proc(n,i,t) local m, mx, j; if n<0 then 0 elif n=0 then `if`(nops ({t[]})=1, 1, 0) elif i=0 then 0 elif i<6 then mx:= max (t[]); m:= n-15*mx +add(t[j]*j, j=1..5); g(n,i,t):= `if`(m>=0 and irem(m, 15)=0, 1, 0) else g(n,i,t):= g(n, i-1, t) + g(n-i, i, mkl(i, t)) fi end:
    a:= n-> g(5*n, 5*n, [0$5]):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jul 04 2009
  • Mathematica
    $RecursionLimit = 1000; mkl[i_, l_List] := Module[{ ll, mn, ii, x}, ii = Mod[i, 5]; ii = If[ii == 0, 5, ii]; ll = MapAt[#+1&, l, ii]; mn = Min[l]; If[mn == 0, ll, Map [#-mn&, ll]]]; g[n_, i_, t_List] := g[n, i, t] = Module[{ m, mx, j}, Which[n<0, 0 , n == 0, If[Length[t // Union] == 1, 1, 0], i==0, 0, i<6, mx = Max[t]; m = n-15*mx + Sum[t[[j]]*j, {j, 1, 5}]; If[m >= 0 && Mod[m, 15] == 0, 1, 0], True, g[n, i-1, t] + g[n-i, i, mkl[i, t]]]]; a[n_] := g[5*n, 5*n, {0, 0, 0, 0, 0}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 21 2015, after Alois P. Heinz *)
  • PARI
    seq(n)={Vec(sum(k=0, n\3, x^(3*k)/prod(j=1, k, 1 - x^j + O(x*x^n))^5) + O(x*x^n))} \\ Andrew Howroyd, Sep 16 2019

Formula

a(n) = A202085(n) - A202086(n).
a(n) = A036884(n) - A036886(n).
a(n) = A036889(n) - A036892(n).
a(n) = A202087(n) - A202088(n).
G.f.: Sum_{k>=0} x^(3*k)/(Product_{j=1..k} 1 - x^j)^5. - Andrew Howroyd, Sep 16 2019

Extensions

a(18)-a(35) from Alois P. Heinz, Jul 04 2009
Edited by Max Alekseyev, Dec 11 2011
a(36) from Alois P. Heinz, Feb 03 2013