A046802 T(n, k) = Sum_{j=k..n} binomial(n, j)*E1(j, j-k), where E1 are the Eulerian numbers A173018. Triangle read by rows, T(n, k) for 0 <= k <= n.
1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 33, 15, 1, 1, 31, 131, 131, 31, 1, 1, 63, 473, 883, 473, 63, 1, 1, 127, 1611, 5111, 5111, 1611, 127, 1, 1, 255, 5281, 26799, 44929, 26799, 5281, 255, 1, 1, 511, 16867, 131275, 344551, 344551, 131275, 16867, 511, 1, 1, 1023, 52905
Offset: 0
Examples
The triangle T(n, k) begins: n\k 0 1 2 3 4 5 6 7 0: 1 1: 1 1 2: 1 3 1 3: 1 7 7 1 4: 1 15 33 15 1 5: 1 31 131 131 31 1 6: 1 63 473 883 473 63 1 7: 1 127 1611 5111 5111 1611 127 1 ... Reformatted. - _Wolfdieter Lang_, Feb 14 2015
References
- L. Comtet, Advanced Combinatorics, Reidel, Holland, 1974, page 245 [From Roger L. Bagula, Nov 21 2009]
- D. Singh, The numbers L(m,n) and their relations with prepared Bernoulli and Eulerian numbers, Math. Student, 20 (1952), 66-70.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened)
- Paul Barry, General Eulerian Polynomials as Moments Using Exponential Riordan Arrays, Journal of Integer Sequences, 16 (2013), #13.9.6.
- Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.
- Paul Barry, Series reversion with Jacobi and Thron continued fractions, arXiv:2107.14278 [math.NT], 2021.
- Carolina Benedetti, Anastasia Chavez, and Daniel Tamayo, Quotients of uniform positroids, arXiv:1912.06873 [math.CO], 2019.
- V. Buchstaber and T. Panov Toric Topology, arXiv:1210.2368v3 [math.AT], 2014.
- Jan Geuenich, Tilting modules for the Auslander algebra of K[x]/(xn), arXiv:1803.10707 [math.RT], 2018.
- Jun Ma, Shi-mei Ma, and Yeong-Nan Yeh, Recurrence relations for binomial-eulerian polynomials, arXiv:1711.09016 [math.CO], 2017, Thm. 2.1.
- A. Postnikov, Total positivity, Grassmannians, and networks, arXiv:math/0609764 [math.CO], 2006.
- A. Postnikov, V. Reiner, and L. Williams, Faces of generalized permutohedra, arXiv:math/0609184 [math.CO], 2006-2007.
- D. Singh, The numbers L(m,n) and their relations with prepared Bernoulli and Eulerian numbers, Math. Student, 20 (1952), 66-70. [Annotated scanned copy]
- L. K. Williams, Enumeration of totally positive Grassmann cells, arXiv:math/0307271 [math.CO], 2003-2004.
- L. Williams, The Positive Grassmannian (from a mathematician's perspective), 2014
Crossrefs
Programs
-
Maple
T := (n, k) -> add(binomial(n, r)*combinat:-eulerian1(r, r-k), r = k .. n): for n from 0 to 8 do seq(T(n, k), k=0..n) od; # Peter Luschny, Jun 27 2018
-
Mathematica
t[, 1] = 1; t[n, n_] = 1; t[n_, 2] = 2^(n-1)-1; t[n_, k_] = Sum[((i-k+1)^i*(k-i)^(n-i-1) - (i-k+2)^i*(k-i-1)^(n-i-1))*Binomial[n-1, i], {i, 0, k-1}]; T[n_, k_] := t[n+1, k+1]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 22 2015, after Tom Copeland *) T[ n_, k_] := Coefficient[n! SeriesCoefficient[(1-x) Exp[t] / (1 - x Exp[(1-x) t]), {t, 0, n}] // Simplify, x, k]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] (* Michael Somos, Jan 22 2015 *)
Formula
E.g.f.: (y-1)*exp(x*y)/(y-exp((y-1)*x)). - Vladeta Jovovic, Sep 20 2003
p(t,x) = (1 - x)*exp(t)/(1 - x*exp(t*(1 - x))). - Roger L. Bagula, Nov 21 2009
With offset=0, T(n,0)=1 otherwise T(n,k) = sum_{i=0..k-1} C(n,i)((i-k)^i*(k-i+1)^(n-i) - (i-k+1)^i*(k-i)^(n-i)) (cf. Williams). - Tom Copeland, Oct 10 2014
With offset 0, T = A007318 * A123125. Second column is A000225; 3rd, appears to be A066810. - Tom Copeland, Jan 23 2015
A raising operator (with D = d/dx) associated with this entry's row polynomials is R = x + t + (1-t) / [1-t e^{(1-t)D}] = x + t + 1 + t D + (t+t^2) D^2/2! + (t+4t^2+t^3) D^3/3! + ... , containing the e.g.f. for the Eulerian polynomials of A123125. Then R^n 1 = (p.(0;t)+x)^n = p_n(x;t) are the Appell polynomials with this entry's row polynomials p_n(0;t) as the base sequence. Examples of this formalism are given in A028246 and A248727. - Tom Copeland, Jan 24 2015
With offset 0, T = A007318*(padded A090582)*(inverse of A097805) = A007318*(padded A090582)*(padded A130595) = A007318*A123125 = A007318*(padded A090582)*A007318*A097808*A130595, where padded matrices are of the form of padded A007318, which is A097805. Inverses of padded matrices are just the padded versions of inverses of the unpadded matrices. This relates the face vectors, or f-vectors, and h-vectors of the permutahedra / permutohedra to those of the stellahedra / stellohedra. - Tom Copeland, Nov 13 2016
Umbrally, the row polynomials (offset 0) are r_n(x) = (1 + q.(x))^n, where (q.(x))^k = q_k(x) are the row polynomials of A123125. - Tom Copeland, Nov 16 2016
From the previous umbral statement, OP(x,d/dy) y^n = (y + q.(x))^n, where OP(x,y) = exp[y * q.(x)] = (1-x)/(1-x*exp((1-x)y)), the e.g.f. of A123125, so OP(x,d/dy) y^n evaluated at y = 1 is r_n(x), the n-th row polynomial of this entry, with offset 0. - Tom Copeland, Jun 25 2018
Consolidating some formulas in this entry and A248727, in umbral notation for concision, with all offsets 0: Let A_n(x;y) = (y + E.(x))^n, an Appell sequence in y where E.(x)^k = E_k(x) are the Eulerian polynomials of A123125. Then the row polynomials of this entry (A046802, the h-polynomials of the stellahedra) are given by h_n(x) = A_n(x;1); the row polynomials of A248727 (the face polynomials of the stellahedra), by f_n(x) = A_n(1 + x;1); the Swiss-knife polynomials of A119879, by Sw_n(x) = A_n(-1;1 + x); and the row polynomials of the Worpitsky triangle (A130850), by w_n(x) = A(1 + x;0). Other specializations of A_n(x;y) give A090582 (the f-polynomials of the permutohedra, cf. also A019538) and A028246 (another version of the Worpitsky triangle). - Tom Copeland, Jan 24 2020
From Peter Luschny, Apr 30 2021: (Start)
Sum_{k=0..n} (-1)^k*T(n, k) = A122045(n).
Sum_{k=0..n} 2^(n-k)*T(n,k) = A007047(n).
Sum_{k=0..n} T(n, n-k) = A000522(n).
Sum_{k=0..n} T(n-k, k) = Sum_{k=0..n} (n - k)^k = A026898(n-1) for n >= 1.
Sum_{k=0..n} k*T(n, k) = A036919(n) = floor(n*n!*e/2).
(End)
Extensions
More terms from Vladeta Jovovic, Sep 20 2003
First formula corrected by Wolfdieter Lang, Feb 14 2015
Offset set to 0 and edited by Peter Luschny, Apr 30 2021
Comments