A047217 Numbers that are congruent to {0, 1, 2} mod 5.
0, 1, 2, 5, 6, 7, 10, 11, 12, 15, 16, 17, 20, 21, 22, 25, 26, 27, 30, 31, 32, 35, 36, 37, 40, 41, 42, 45, 46, 47, 50, 51, 52, 55, 56, 57, 60, 61, 62, 65, 66, 67, 70, 71, 72, 75, 76, 77, 80, 81, 82, 85, 86, 87, 90, 91, 92, 95, 96, 97, 100, 101, 102, 105, 106, 107, 110, 111
Offset: 1
Links
- Mohammed Yaseen, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Vincenzo Librandi)
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Crossrefs
Programs
-
Magma
I:=[0, 1, 2, 5]; [n le 4 select I[n] else Self(n-1)+Self(n-3)-Self(n-4): n in [1..70]]; // Vincenzo Librandi, Apr 25 2012
-
Magma
&cat [[5*n,5*n+1,5*n+2]: n in [0..30]]; // Bruno Berselli, Dec 09 2015
-
Maple
seq(op([5*i,5*i+1,5*i+2]),i=0..100); # Robert Israel, Sep 02 2014
-
Mathematica
Select[Range[0,120], MemberQ[{0,1,2}, Mod[#,5]]&] (* Harvey P. Dale, Jan 20 2012 *)
-
PARI
a(n)=n--\3*5+n%3 \\ Charles R Greathouse IV, Oct 22 2011
-
PARI
concat(0, Vec(x^2*(1+x+3*x^2)/(1-x)^2/(1+x+x^2) + O(x^100))) \\ Altug Alkan, Dec 09 2015
-
PARI
is(n) = n%5 < 3 \\ Felix Fröhlich, Jan 05 2018
Formula
a(n+1) = Sum_{k>=0} A030341(n,k)*b(k) with b(0)=1 and b(k)=5*3^(k-1) for k>0. - Philippe Deléham, Oct 22 2011
G.f.: x^2*(1+x+3*x^2)/(1-x)^2/(1+x+x^2). - Colin Barker, Feb 17 2012
a(n) = 5 + a(n-3) for n>3. - Robert Israel, Sep 02 2014
a(n) = floor((5/4)*floor(4*(n-1)/3)). - Bruno Berselli, May 03 2016
From Wesley Ivan Hurt, Jun 14 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (15*n-21-6*cos(2*n*Pi/3)+2*sqrt(3)*sin(2*n*Pi/3))/9.
a(3*k) = 5*k-3, a(3*k-1) = 5*k-4, a(3*k-2) = 5*k-5. (End)
a(n) = n - 1 + 2*floor((n-1)/3). - Bruno Berselli, Feb 06 2017
Sum_{n>=2} (-1)^n/a(n) = sqrt(1-2/sqrt(5))*Pi/5 + 3*log(2)/5. - Amiram Eldar, Dec 10 2021
Comments