cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047228 Numbers that are congruent to {2, 3, 4} mod 6.

Original entry on oeis.org

2, 3, 4, 8, 9, 10, 14, 15, 16, 20, 21, 22, 26, 27, 28, 32, 33, 34, 38, 39, 40, 44, 45, 46, 50, 51, 52, 56, 57, 58, 62, 63, 64, 68, 69, 70, 74, 75, 76, 80, 81, 82, 86, 87, 88, 92, 93, 94, 98, 99, 100, 104, 105, 106, 110, 111, 112, 116, 117, 118, 122, 123, 124
Offset: 1

Views

Author

Keywords

Comments

In other words, numbers that are divisible by 2 or by 3, but not by 6 (sorted). - David James Sycamore, Aug 22 2023

Examples

			From _David A. Corneth_, Aug 22 2023: (Start)
10 is in the sequence as 10 == 4 (mod 6) and 4 is in {2, 3, 4}.
11 is not in the sequence as 11 == 5 (mod 6) and 5 is not in {2, 3, 4}. (End)
		

Crossrefs

Programs

  • Haskell
    a047228 n = a047228_list !! (n-1)
    a047228_list = 2 : 3 : 4 : map (+ 6) a047228_list
    -- Reinhard Zumkeller, Feb 19 2013
    
  • Magma
    [n: n in [0..120] | n mod 6 in [2..4]]; // Vincenzo Librandi, Jan 05 2013
    
  • Maple
    A047228:=n->2*n-1-cos(2*n*Pi/3)+sin(2*n*Pi/3)/sqrt(3): seq(A047228(n), n=1..100); # Wesley Ivan Hurt, Jun 13 2016
  • Mathematica
    Select[Range[0, 150], MemberQ[{2, 3, 4}, Mod[#, 6]]&] (* Vincenzo Librandi, Jan 06 2013 *)
  • PARI
    a(n) = 6*((n-1)\3) + 2 + (n-1)%3 \\ David A. Corneth, Aug 22 2023
    
  • PARI
    nxt(n) = if(n%3 == 1, n+4, n+1) \\ David A. Corneth, Aug 22 2023

Formula

From Paul Barry, Sep 01 2009: (Start)
G.f.: (2+x+x^2+2*x^3)/(1-x-x^3+x^4).
a(n) = 2*n-1-cos(2*n*Pi/3)+sin(2*n*Pi/3)/sqrt(3). (End) [adapted for offset 1 by Wesley Ivan Hurt, Jun 13 2016]
From Wesley Ivan Hurt, Jun 13 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(3k) = 6k-2, a(3k-1) = 6k-3, a(3k-2) = 6k-4. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (4*sqrt(3)-3)*Pi/36. - Amiram Eldar, Dec 16 2021
E.g.f.: 2 + exp(x)*(2*x - 1) - exp(-x/2)*(3*cos(sqrt(3)*x/2) - sqrt(3)*sin(sqrt(3)*x/2))/3. - Stefano Spezia, Jul 26 2024