A047233 Numbers that are congruent to {0, 4} mod 6.
0, 4, 6, 10, 12, 16, 18, 22, 24, 28, 30, 34, 36, 40, 42, 46, 48, 52, 54, 58, 60, 64, 66, 70, 72, 76, 78, 82, 84, 88, 90, 94, 96, 100, 102, 106, 108, 112, 114, 118, 120, 124, 126, 130, 132, 136, 138, 142, 144, 148, 150, 154, 156, 160, 162, 166, 168, 172, 174, 178, 180, 184, 186, 190, 192, 196, 198
Offset: 1
Links
- Bruno Berselli, Table of n, a(n) for n = 1..10000
- William A. Stein, Dimensions of the spaces S_k(Gamma_0(N)).
- William A. Stein, The modular forms database.
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Mathematica
Flatten[{#,#+4}&/@(6Range[0,30])] (* Harvey P. Dale, Jul 07 2013 *)
-
PARI
forstep(n=0,200,[4,2],print1(n", ")) \\ Charles R Greathouse IV, Oct 17 2011
Formula
From Bruno Berselli, Jun 24 2010: (Start)
G.f.: 2*x^2*(2 + x)/((1 + x)*(1 - x)^2).
a(n) = a(n-1) + a(n-2) - a(n-3) for n>3.
a(n) = (6*n + (-1)^n - 5)/2. (End)
a(n) = 6*n - a(n-1) - 8 for n>1, a(1)=0. - Vincenzo Librandi, Aug 05 2010
Sum_{n>=2} (-1)^n/a(n) = log(3)/4 - sqrt(3)*Pi/36. - Amiram Eldar, Dec 13 2021
E.g.f.: 2 + ((6*x -5)*exp(x) + exp(-x))/2. - David Lovler, Aug 25 2022
Comments