cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A378096 Decimal expansion of Product_{k>=2} (1 - 1/A047233(k)^2).

Original entry on oeis.org

8, 7, 5, 1, 8, 0, 0, 6, 8, 5, 7, 3, 0, 1, 8, 1, 3, 4, 6, 6, 0, 5, 4, 0, 8, 3, 0, 0, 8, 2, 7, 3, 9, 4, 7, 0, 4, 3, 2, 8, 7, 6, 1, 7, 4, 3, 9, 8, 4, 9, 3, 3, 4, 1, 5, 4, 4, 2, 4, 0, 7, 5, 2, 2, 9, 0, 1, 9, 9, 2, 1, 5, 3, 9, 4, 3, 0, 2, 6, 9, 4, 4, 7, 0, 9, 3, 5, 0, 1, 4, 1, 5, 2, 0, 4, 5, 9, 7, 9, 5, 3, 5, 2, 5, 3
Offset: 0

Views

Author

Frank Richter, Nov 16 2024

Keywords

Comments

Infinite product (1-1/((q-1)^2)) where q = 5, 7, 11, 13, 17, 19, ... (A007310), are integers of the form sqrt(24*k+1), where k are terms of A001318.

Examples

			0.87518006857301813466054083008273947043287617439849...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[2^(2/3)*Sqrt[3]/Pi, 10, 120][[1]] (* Amiram Eldar, Nov 17 2024 *)

Formula

Equals 2^(2/3)*sqrt(3)/Pi. - Amiram Eldar, Nov 17 2024

A047241 Numbers that are congruent to {1, 3} mod 6.

Original entry on oeis.org

1, 3, 7, 9, 13, 15, 19, 21, 25, 27, 31, 33, 37, 39, 43, 45, 49, 51, 55, 57, 61, 63, 67, 69, 73, 75, 79, 81, 85, 87, 91, 93, 97, 99, 103, 105, 109, 111, 115, 117, 121, 123, 127, 129, 133, 135, 139, 141, 145, 147, 151, 153, 157, 159, 163, 165, 169, 171, 175, 177, 181, 183
Offset: 1

Views

Author

Keywords

Comments

Also the numbers k such that 10^p+k could possibly be prime. - Roderick MacPhee, Nov 20 2011 This statement can be written as follows. If 10^m + k = prime, for any m >= 1, then k is in this sequence. See the pink box comments by Roderick MacPhee from Dec 09 2014. - Wolfdieter Lang, Dec 09 2014
The odd-indexed terms are one more than the arithmetic mean of their neighbors; the even-indexed terms are one less than the arithmetic mean of their neighbors. - Amarnath Murthy, Jul 29 2003
Partial sums are A212959. - Philippe Deléham, Mar 16 2014
12*a(n) is conjectured to be the length of the boundary after n iterations of the hexagon and square expansion shown in the link. The squares and hexagons have side length 1 in some units. The pattern is supposed to become the planar Archimedean net 4.6.12 when n -> infinity. - Kival Ngaokrajang, Nov 30 2014
Positive numbers k for which 1/2 + k/3 + k^2/6 is an integer. - Bruno Berselli, Apr 12 2018

References

  • L. Lovasz, J. Pelikan, K. Vesztergombi, Discrete Mathematics, Springer (2003); 14.4, p. 225.

Crossrefs

Subsequence of A186422.
Union of A016921 and A016945. - Wesley Ivan Hurt, Sep 28 2013

Programs

  • Haskell
    a047241 n = a047241_list !! (n-1)
    a047241_list = 1 : 3 : map (+ 6) a047241_list
    -- Reinhard Zumkeller, Feb 19 2013
    
  • Maple
    seq(3*k-2-((k+1) mod 2), k=1..100); # Wesley Ivan Hurt, Sep 28 2013
  • Mathematica
    Table[{2, 4}, {30}] // Flatten // Prepend[#, 1]& // Accumulate (* Jean-François Alcover, Jun 10 2013 *)
    Select[Range[200], MemberQ[{1, 3}, Mod[#, 6]]&] (* or *) LinearRecurrence[{1, 1, -1}, {1, 3, 7}, 70] (* Harvey P. Dale, Oct 01 2013 *)
  • PARI
    a(n)=bitor(3*n-3,1) \\ Charles R Greathouse IV, Sep 28 2013
    
  • Python
    for n in range(1,10**5):print(3*n-2-((n+1)%2)) # Soumil Mandal, Apr 14 2016

Formula

From Paul Barry, Sep 04 2003: (Start)
O.g.f.: (1 + 2*x + 3*x^2)/((1 + x)*(1 - x)^2) = (1 + 2*x + 3*x^2)/((1 - x)*(1 - x^2)).
E.g.f.: (6*x + 1)*exp(x)/2 + exp(-x)/2;
a(n) = 3*n - 5/2 - (-1)^n/2. (End)
a(n) = 2*floor((n-1)/2) + 2*n - 1. - Gary Detlefs, Mar 18 2010
a(n) = 6*n - a(n-1) - 8 with n > 1, a(1)=1. - Vincenzo Librandi, Aug 05 2010
a(n) = 3*n - 2 - ((n+1) mod 2). - Wesley Ivan Hurt, Jun 29 2013
a(1)=1, a(2)=3, a(3)=7; for n>3, a(n) = a(n-1) + a(n-2) - a(n-3). - Harvey P. Dale, Oct 01 2013
From Benedict W. J. Irwin, Apr 13 2016: (Start)
A005408(a(n)+1) = A016813(A001651(n)),
A007310(a(n)) = A005408(A087444(n)-1),
A007310(A005408(a(n)+1)) = A017533(A001651(n)). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(4*sqrt(3)) + log(3)/4. - Amiram Eldar, Dec 11 2021

Extensions

Formula corrected by Bruno Berselli, Jun 24 2010

A047255 Numbers that are congruent to {1, 2, 3, 5} mod 6.

Original entry on oeis.org

1, 2, 3, 5, 7, 8, 9, 11, 13, 14, 15, 17, 19, 20, 21, 23, 25, 26, 27, 29, 31, 32, 33, 35, 37, 38, 39, 41, 43, 44, 45, 47, 49, 50, 51, 53, 55, 56, 57, 59, 61, 62, 63, 65, 67, 68, 69, 71, 73, 74, 75, 77, 79, 80, 81, 83, 85, 86, 87, 89, 91, 92, 93, 95, 97, 98, 99, 101, 103, 104
Offset: 1

Views

Author

Keywords

Comments

Each element is coprime to preceding two elements. - Amarnath Murthy, Jun 12 2001
The sequence is the interleaving of A047241 with A016789. - Guenther Schrack, Feb 16 2019

Examples

			After 21 and 23 the next term is 25 as 24 has a common divisor with 21.
		

Crossrefs

Programs

  • Haskell
    a047255 n = a047255_list !! (n-1)
    a047255_list = 1 : 2 : 3 : 5 : map (+ 6) a047255_list
    -- Reinhard Zumkeller, Jan 17 2014
    
  • Magma
    [n : n in [0..100] | n mod 6 in [1, 2, 3, 5]]; // Wesley Ivan Hurt, May 21 2016
    
  • Maple
    A047255:=n->(6*n-4+I^(1-n)+I^(n-1))/4: seq(A047255(n), n=1..100); # Wesley Ivan Hurt, May 20 2016
  • Mathematica
    Select[Range[100], MemberQ[{1, 2, 3, 5}, Mod[#, 6]] &]
    LinearRecurrence[{2,-2,2,-1},{1,2,3,5},100] (* Harvey P. Dale, May 14 2020 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,2,-2,2]^(n-1)*[1;2;3;5])[1,1] \\ Charles R Greathouse IV, Feb 11 2017
    
  • Sage
    a=(x*(1+x^2+x^3)/((1+x^2)*(1-x)^2)).series(x, 80).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Feb 16 2019

Formula

{k | k == 1, 2, 3, 5 (mod 6)}.
G.f.: x*(1 + x^2 + x^3) / ((1+x^2)*(1-x)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, May 20 2016: (Start)
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4), for n>4.
a(n) = (6*n - 4 + i^(1-n) + i^(n-1))/4, where i = sqrt(-1).
a(2*n) = A016789(n-1) for n>0, a(2*n-1) = A047241(n). (End)
E.g.f.: (2 + sin(x) + (3*x - 2)*exp(x))/2. - Ilya Gutkovskiy, May 21 2016
a(1-n) = - A047251(n). - Wesley Ivan Hurt, May 21 2016
From Guenther Schrack, Feb 16 2019: (Start)
a(n) = (6*n - 4 + (1 - (-1)^n)*(-1)^(n*(n-1)/2))/4.
a(n) = a(n-4) + 6, a(1)=1, a(2)=2, a(3)=3, a(4)=5, for n > 4.
a(n) = A047237(n) + 1. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = 5*sqrt(3)*Pi/36 + log(2)/3 - log(3)/4. - Amiram Eldar, Dec 17 2021
a(n) = 2*n - 1 - floor(n/2) + floor(n/4) - floor((n+1)/4). - Ridouane Oudra, Feb 21 2023

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jun 15 2001

A352475 Numbers m such that gcd(d(m),6) = 1.

Original entry on oeis.org

1, 16, 64, 81, 625, 729, 1024, 1296, 2401, 4096, 5184, 10000, 11664, 14641, 15625, 28561, 38416, 40000, 46656, 50625, 59049, 65536, 82944, 83521, 117649, 130321, 153664, 194481, 234256, 250000, 262144, 279841, 331776, 455625, 456976, 531441, 640000, 707281, 746496
Offset: 1

Views

Author

Michael De Vlieger, Mar 26 2022

Keywords

Comments

All terms are square since numbers coprime to 6 are odd.
The square roots of terms are in A001694.
Intersection of A000290 and A336590, i.e., numbers whose prime factorization has only exponents that are congruent to {0, 4} mod 6 (A047233). - Amiram Eldar, Mar 31 2022

Crossrefs

Programs

  • Mathematica
    Select[Range[864]^2, GCD[DivisorSigma[0, #], 6] == 1 &] (* or, more efficiently, *)
    With[{nn = 864}, Select[Union[Flatten@ Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}]]^2, Mod[DivisorSigma[0, #], 3] > 0 &]]
  • PARI
    isok(m) = gcd(numdiv(m), 6) == 1; \\ Michel Marcus, Mar 29 2022
    
  • PARI
    m = 100000; seq = direuler(p=2, m, (1 - X^8)/(1 - X^4)/(1 - X^6)); for(n=1, m, if(seq[n] != 0, print1(n, ", "))) \\ Vaclav Kotesovec, May 19 2022

Formula

a(n) = A350014(n)^2.
Sum_{n>=1} 1/a(n) = Pi^2/9 (A100044). - Amiram Eldar, Mar 31 2022
The number of terms <= x is (zeta(3/2)/zeta(2))*x^(1/4) + (zeta(2/3)/zeta(4/3))*x^(1/6) + O(x^(1/8 + eps)), for all eps > 0 (Hilberdink, 2022). - Amiram Eldar, May 18 2022

A047260 Numbers that are congruent to {0, 1, 4, 5} mod 6.

Original entry on oeis.org

0, 1, 4, 5, 6, 7, 10, 11, 12, 13, 16, 17, 18, 19, 22, 23, 24, 25, 28, 29, 30, 31, 34, 35, 36, 37, 40, 41, 42, 43, 46, 47, 48, 49, 52, 53, 54, 55, 58, 59, 60, 61, 64, 65, 66, 67, 70, 71, 72, 73, 76, 77, 78, 79, 82, 83, 84, 85, 88, 89, 90, 91, 94, 95, 96, 97
Offset: 1

Views

Author

Keywords

Comments

Numbers x which are not a solution to 3^x - 2^x == 5 mod 7. - Cino Hilliard, May 14 2003
The sequence is the interleaving of A047233 with A007310. - Guenther Schrack, Feb 13 2019

Crossrefs

Complement: A047243.

Programs

  • GAP
    Filtered([0..100],n->n mod 6 = 0 or n mod 6 = 1 or n mod 6 = 4 or n mod 6 = 5); # Muniru A Asiru, Feb 19 2019
  • Magma
    [n : n in [0..100] | n mod 6 in [0, 1, 4, 5]]; // Wesley Ivan Hurt, May 21 2016
    
  • Maple
    A047260:=n->(6*n-5-I^(2*n)+(1-I)*I^(-n)+(1+I)*I^n)/4: seq(A047260(n), n=1..100); # Wesley Ivan Hurt, May 21 2016
  • Mathematica
    Table[(6n-5-I^(2n)+(1-I)*I^(-n)+(1+I)*I^n)/4, {n, 80}] (* Wesley Ivan Hurt, May 21 2016 *)
    LinearRecurrence[{1,0,0,1,-1},{0,1,4,5,6},70] (* Harvey P. Dale, Sep 20 2023 *)
  • PARI
    my(x='x+O('x^70)); concat([0], Vec(x^2*(1+3*x+x^2+x^3)/((1-x)*(1-x^4)))) \\ G. C. Greubel, Feb 16 2019
    
  • Sage
    a=(x^2*(1+3*x+x^2+x^3)/((1-x)*(1-x^4))).series(x, 72).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Feb 16 2019
    

Formula

G.f.: x^2*(1+3*x+x^2+x^3) / ((1+x)*(1+x^2)*(1-x)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, May 21 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (6*n - 5 - i^(2*n) + (1-i)*i^(-n) + (1+i)*i^n)/4 where i=sqrt(-1).
a(2*n) = A007310(n), a(2*n-1) = A047233(n). (End)
From Guenther Schrack, Feb 13 2019: (Start)
a(n) = (6*n - 5 - (-1)^n + 2*(-1)^(n*(n + 1)/2))/4.
a(n) = a(n-4) + 6, a(1)=0, a(2)=1, a(3)=4, a(4)=5, for n > 4.
a(-n) = -A047269(n+2). (End)
Sum_{n>=2} (-1)^n/a(n) = sqrt(3)*Pi/36 + log(3)/4 + 2*log(2)/3. - Amiram Eldar, Dec 16 2021

Extensions

More terms from Wesley Ivan Hurt, May 21 2016

A047262 Numbers that are congruent to {0, 2, 4, 5} mod 6.

Original entry on oeis.org

0, 2, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 22, 23, 24, 26, 28, 29, 30, 32, 34, 35, 36, 38, 40, 41, 42, 44, 46, 47, 48, 50, 52, 53, 54, 56, 58, 59, 60, 62, 64, 65, 66, 68, 70, 71, 72, 74, 76, 77, 78, 80, 82, 83, 84, 86, 88, 89, 90, 92, 94, 95, 96, 98
Offset: 1

Views

Author

Keywords

Comments

The sequence is the interleaving of A047233 with A016789(n-1). - Guenther Schrack, Feb 14 2019

Crossrefs

Complement: A047241.

Programs

  • Magma
    [n : n in [0..100] | n mod 6 in [0, 2, 4, 5]]; // Wesley Ivan Hurt, May 21 2016
    
  • Maple
    A047262:=n->(6*n-4-I^(1-n)+I^(1+n))/4: seq(A047262(n), n=1..100); # Wesley Ivan Hurt, May 21 2016
  • Mathematica
    Select[Range[0,100], MemberQ[{0,2,4,5}, Mod[#,6]]&] (* or *) LinearRecurrence[{2,-2,2,-1}, {0,2,4,5}, 70] (* Harvey P. Dale, Dec 09 2015 *)
  • PARI
    my(x='x+O('x^70)); concat([0], Vec(x^2*(2+x^2)/((1+x^2)*(1-x)^2))) \\ G. C. Greubel, Feb 16 2019
    
  • Sage
    a=(x^2*(2+x^2)/((1+x^2)*(1-x)^2)).series(x, 72).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Feb 16 2019

Formula

From R. J. Mathar, Oct 08 2011: (Start)
G.f.: x^2*(2+x^2) / ( (1+x^2)*(1-x)^2 ).
a(n) = 3*n/2 - 1 - sin(Pi*n/2)/2. (End)
From Wesley Ivan Hurt, May 21 2016: (Start)
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) for n > 4.
a(n) = (6*n - 4 - i^(1-n) + i^(1+n))/4, where i = sqrt(-1).
a(2*n) = A016789(n-1) for n>0, a(2*n-1) = A047233(n).
a(2-n) = - A047237(n), a(n-1) = A047273(n) - 1 for n > 1. (End)
From Guenther Schrack, Feb 14 2019: (Start)
a(n) = (6*n - 4 - (1 - (-1)^n)*(-1)^(n*(n-1)/2))/4.
a(n) = a(n-4) + 6, a(1)=0, a(2)=2, a(3)=4, a(4)=5, for n > 4. (End)
Sum_{n>=2} (-1)^n/a(n) = log(3)/4 + log(2)/3 - sqrt(3)*Pi/36. - Amiram Eldar, Dec 17 2021

Extensions

More terms from Wesley Ivan Hurt, May 21 2016

A047250 Numbers that are congruent to {0, 3, 4, 5} (mod 6).

Original entry on oeis.org

0, 3, 4, 5, 6, 9, 10, 11, 12, 15, 16, 17, 18, 21, 22, 23, 24, 27, 28, 29, 30, 33, 34, 35, 36, 39, 40, 41, 42, 45, 46, 47, 48, 51, 52, 53, 54, 57, 58, 59, 60, 63, 64, 65, 66, 69, 70, 71, 72, 75, 76, 77, 78, 81, 82, 83, 84, 87, 88, 89, 90, 93, 94, 95, 96, 99
Offset: 1

Views

Author

Keywords

Comments

The sequence is the interleaving of A047233 with A047270. - Guenther Schrack, Feb 15 2019

Crossrefs

Complement: A047239.

Programs

  • Magma
    [n : n in [0..150] | n mod 6 in [0, 3, 4, 5]]; // Wesley Ivan Hurt, Jun 02 2016
    
  • Maple
    A047250:=n->(6*n-3+I^(2*n)-(1+I)*I^(-n)-(1-I)*I^n)/4: seq(A047250(n), n=1..100); # Wesley Ivan Hurt, Jun 02 2016
  • Mathematica
    Select[Range[0,100], MemberQ[{0,3,4,5}, Mod[#,6]]&] (* or *) LinearRecurrence[{1,0,0,1,-1}, {0,3,4,5,6}, 60] (* Harvey P. Dale, Apr 01 2013 *)
  • PARI
    my(x='x+O('x^70)); concat([0], Vec(x^2*(3+x+x^2+x^3)/((1+x)*(1+x^2)*(1-x)^2))) \\ G. C. Greubel, Feb 16 2019
    
  • Sage
    a=(x^2*(3+x+x^2+x^3)/((1+x)*(1+x^2)*(1-x)^2)).series(x, 72).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Feb 16 2019

Formula

G.f.: x^2*(3+x+x^2+x^3)/((1+x)*(1+x^2)*(1-x)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jun 02 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (6*n - 3 + i^(2*n) - (1+i)*i^(-n) - (1-i)*i^n)/4 where i=sqrt(-1).
a(2*k) = A047270(k), a(2*k-1) = A047233(k). (End)
E.g.f.: (2 - sin(x) - cos(x) + (3*x - 2)*sinh(x) + (3*x - 1)*cosh(x))/2. - Ilya Gutkovskiy, Jun 02 2016
From Guenther Schrack, Feb 15 2019: (Start)
a(n) = (6*n - 3 + (-1)^n - 2*(-1)^(n*(n-1)/2))/4.
a(n) = a(n-4) + 6, a(1)=0, a(2)=3, a(3)=4, a(4)=5, for n > 4.
a(-n) = -A047246(n+2). (End)
Sum_{n>=2} (-1)^n/a(n) = 2*log(2)/3 - Pi/(6*sqrt(3)). - Amiram Eldar, Dec 17 2021

A229489 Conjecturally, possible differences between prime(k)^2 and the next prime for some k.

Original entry on oeis.org

1, 2, 4, 6, 10, 12, 16, 18, 22, 24, 28, 30, 34, 36, 40, 42, 46, 48, 52, 54, 58, 60, 64, 66, 70, 72, 76, 78, 82, 84, 88, 90, 94, 96, 100, 102, 106, 108, 112, 114, 118, 120, 124, 126, 130, 132, 136, 138, 142, 144, 148, 150, 154, 156, 160, 162, 166, 168, 172, 174
Offset: 1

Views

Author

T. D. Noe, Oct 21 2013

Keywords

Comments

Are there any missing terms? The first 10^7 primes were examined. All these differences occur for some k < 10^5. Note that the first differences of these terms is 1, 2, or 4.
The similarity to A047233 is understood by a comment in A091666. - R. J. Mathar, Oct 28 2013

Crossrefs

Cf. A000040 (primes), A001248 (primes squared).
Cf. A004277 (conjecturally, possible gaps between adjacent primes).
Cf. A091666 (prime greater than prime(n)^2).
Cf. A229488 (possible differences between prime(k)^2 and the previous prime).

Programs

  • Mathematica
    t = Table[p2 = Prime[k]^2; NextPrime[p2] - p2, {k, 100000}]; Take[Union[t], 60]
    NextPrime[#]-#&/@(Prime[Range[100000]]^2)//Union (* Harvey P. Dale, Apr 19 2020 *)
Showing 1-8 of 8 results.