cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A113828 a(n) = Sum[2^(A047260(i)-1), {i,1,n}].

Original entry on oeis.org

1, 9, 25, 57, 121, 633, 1657, 3705, 7801, 40569, 106105, 237177, 499321, 2596473, 6790777, 15179385, 31956601, 166174329, 434609785, 971480697, 2045222521, 10635157113, 27815026297, 62174764665, 130894241401, 680650055289
Offset: 1

Views

Author

Artur Jasinski, Jan 27 2006

Keywords

Examples

			a(2) = 2^(A047260(1)-1) + 2^(A047260(2)-1) = 2^0 + 2^3 = 9
		

Crossrefs

Cf. A047260.

Programs

  • Mathematica
    a = {}; s = 0; For[n = 1, n < 41, n++, If[Length[Intersection[{Mod[n, 6]}, {0, 1, 4, 5}]] > 0, s = s + 2^(n - 1); AppendTo[a, s]]]; a

Formula

Empirical g.f.: x*(32*x^3+16*x^2+8*x+1) / ((x-1)*(8*x^2-1)*(8*x^2+1)). - Colin Barker, Sep 01 2013

Extensions

Edited by Stefan Steinerberger, Jul 23 2007

A047243 Numbers that are congruent to {2, 3} mod 6.

Original entry on oeis.org

2, 3, 8, 9, 14, 15, 20, 21, 26, 27, 32, 33, 38, 39, 44, 45, 50, 51, 56, 57, 62, 63, 68, 69, 74, 75, 80, 81, 86, 87, 92, 93, 98, 99, 104, 105, 110, 111, 116, 117, 122, 123, 128, 129, 134, 135, 140, 141, 146, 147, 152, 153, 158, 159, 164, 165, 170, 171, 176, 177, 182, 183
Offset: 1

Views

Author

Keywords

Comments

Solutions to 3^x - 2^x == 5 (mod 7). - Cino Hilliard, May 09 2003

References

  • Emil Grosswald, Topics From the Theory of Numbers, 1966, p. 65, problem 23.

Crossrefs

Cf. A030531. Complement of A047260.

Programs

  • GAP
    List([1..70], n-> 3*n-2-(-1)^n) # G. C. Greubel, Jun 30 2019
  • Magma
    [3*n-2-(-1)^n: n in [1..70]]; // G. C. Greubel, Jun 30 2019
    
  • Mathematica
    Select[Range[0, 210], MemberQ[{2, 3}, Mod[#, 6]] &] (* or *)
    Fold[Append[#1, 6 #2 - Last@ #1 - 7] &, {2}, Range[2, 70]] (* or *)
    Rest@ CoefficientList[Series[x(2+x+3x^2)/((1+x)(1-x)^2), {x, 0, 70}], x] (* Michael De Vlieger, Jan 12 2018 *)
  • PARI
    vector(70, n, 3*n-2-(-1)^n) \\ G. C. Greubel, Jun 30 2019
    
  • Sage
    [3*n-2-(-1)^n for n in (1..70)] # G. C. Greubel, Jun 30 2019
    

Formula

a(n) = 6*n - 7 - a(n-1), with a(1)=2. - Vincenzo Librandi, Aug 05 2010
G.f.: x*(2+x+3*x^2) / ( (1+x)*(1-x)^2 ). - R. J. Mathar, Oct 08 2011
From Guenther Schrack, Jun 21 2019: (Start)
a(n) = a(n-2) + 6 with a(1)=2, a(2)=3 for n > 2;
a(n) = 3*n - 2 - (-1)^n. (End)
E.g.f.: 3 - 3*(1-x)*cosh(x) - (1-3*x)*sinh(x). - G. C. Greubel, Jun 30 2019
E.g.f.: 3 + (3*x-3)*exp(x) + 2*sinh(x). - David Lovler, Jul 16 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(12*sqrt(3)) + log(3)/4 - log(2)/3. - Amiram Eldar, Dec 13 2021

Extensions

More terms from Cino Hilliard, May 09 2003
Showing 1-2 of 2 results.