A047238 Numbers that are congruent to {0, 2} mod 6.
0, 2, 6, 8, 12, 14, 18, 20, 24, 26, 30, 32, 36, 38, 42, 44, 48, 50, 54, 56, 60, 62, 66, 68, 72, 74, 78, 80, 84, 86, 90, 92, 96, 98, 102, 104, 108, 110, 114, 116, 120, 122, 126, 128, 132, 134, 138, 140, 144, 146, 150, 152, 156, 158, 162
Offset: 1
Links
- Bruno Berselli, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Crossrefs
Programs
-
Magma
[n: n in [0..200]|n mod 6 in {0,2}]; // Vincenzo Librandi, Jan 12 2016
-
Mathematica
Select[Range[0,200],MemberQ[{0,2},Mod[#,6]]&] (* or *) LinearRecurrence[ {1,1,-1},{0,2,6},70] (* Harvey P. Dale, Jun 15 2011 *)
-
PARI
forstep(n=0,200,[2,4],print1(n", ")) \\ Charles R Greathouse IV, Oct 17 2011
Formula
From Bruno Berselli, Jun 24 2010: (Start)
G.f.: 2*x*(1+2*x)/((1+x)*(1-x)^2).
a(n) = a(n-1) + a(n-2) - a(n-3), a(0)=0, a(1)=2, a(2)=6.
a(n) = (6*n - (-1)^n-7)/2.
a(n) = 2*A032766(n-1). (End)
a(n) = 6*n - a(n-1) - 10 (with a(1)=0). - Vincenzo Librandi, Aug 05 2010
a(n) = 2*floor(3*n/2). - Enrique Pérez Herrero, Jul 04 2012
Sum_{n>=2} (-1)^n/a(n) = sqrt(3)*Pi/36 + log(3)/4. - Amiram Eldar, Dec 13 2021
E.g.f: 3*(x-1)*exp(x) - cosh(x) + 4. - David Lovler, Jul 11 2022
Comments