cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047255 Numbers that are congruent to {1, 2, 3, 5} mod 6.

Original entry on oeis.org

1, 2, 3, 5, 7, 8, 9, 11, 13, 14, 15, 17, 19, 20, 21, 23, 25, 26, 27, 29, 31, 32, 33, 35, 37, 38, 39, 41, 43, 44, 45, 47, 49, 50, 51, 53, 55, 56, 57, 59, 61, 62, 63, 65, 67, 68, 69, 71, 73, 74, 75, 77, 79, 80, 81, 83, 85, 86, 87, 89, 91, 92, 93, 95, 97, 98, 99, 101, 103, 104
Offset: 1

Views

Author

Keywords

Comments

Each element is coprime to preceding two elements. - Amarnath Murthy, Jun 12 2001
The sequence is the interleaving of A047241 with A016789. - Guenther Schrack, Feb 16 2019

Examples

			After 21 and 23 the next term is 25 as 24 has a common divisor with 21.
		

Crossrefs

Programs

  • Haskell
    a047255 n = a047255_list !! (n-1)
    a047255_list = 1 : 2 : 3 : 5 : map (+ 6) a047255_list
    -- Reinhard Zumkeller, Jan 17 2014
    
  • Magma
    [n : n in [0..100] | n mod 6 in [1, 2, 3, 5]]; // Wesley Ivan Hurt, May 21 2016
    
  • Maple
    A047255:=n->(6*n-4+I^(1-n)+I^(n-1))/4: seq(A047255(n), n=1..100); # Wesley Ivan Hurt, May 20 2016
  • Mathematica
    Select[Range[100], MemberQ[{1, 2, 3, 5}, Mod[#, 6]] &]
    LinearRecurrence[{2,-2,2,-1},{1,2,3,5},100] (* Harvey P. Dale, May 14 2020 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,2,-2,2]^(n-1)*[1;2;3;5])[1,1] \\ Charles R Greathouse IV, Feb 11 2017
    
  • Sage
    a=(x*(1+x^2+x^3)/((1+x^2)*(1-x)^2)).series(x, 80).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Feb 16 2019

Formula

{k | k == 1, 2, 3, 5 (mod 6)}.
G.f.: x*(1 + x^2 + x^3) / ((1+x^2)*(1-x)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, May 20 2016: (Start)
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4), for n>4.
a(n) = (6*n - 4 + i^(1-n) + i^(n-1))/4, where i = sqrt(-1).
a(2*n) = A016789(n-1) for n>0, a(2*n-1) = A047241(n). (End)
E.g.f.: (2 + sin(x) + (3*x - 2)*exp(x))/2. - Ilya Gutkovskiy, May 21 2016
a(1-n) = - A047251(n). - Wesley Ivan Hurt, May 21 2016
From Guenther Schrack, Feb 16 2019: (Start)
a(n) = (6*n - 4 + (1 - (-1)^n)*(-1)^(n*(n-1)/2))/4.
a(n) = a(n-4) + 6, a(1)=1, a(2)=2, a(3)=3, a(4)=5, for n > 4.
a(n) = A047237(n) + 1. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = 5*sqrt(3)*Pi/36 + log(2)/3 - log(3)/4. - Amiram Eldar, Dec 17 2021
a(n) = 2*n - 1 - floor(n/2) + floor(n/4) - floor((n+1)/4). - Ridouane Oudra, Feb 21 2023

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jun 15 2001