A047257 Numbers that are congruent to {4, 5} mod 6.
4, 5, 10, 11, 16, 17, 22, 23, 28, 29, 34, 35, 40, 41, 46, 47, 52, 53, 58, 59, 64, 65, 70, 71, 76, 77, 82, 83, 88, 89, 94, 95, 100, 101, 106, 107, 112, 113, 118, 119, 124, 125, 130, 131, 136, 137, 142, 143, 148, 149
Offset: 1
References
- Michael Doob, The Canadian Mathematical Olympiad & L'Olympiade Mathématique du Canada 1969-1993, Canadian Mathematical Society & Société Mathématique du Canada, Problem 4, 1983, page 158, 1993.
Links
- David Lovler, Table of n, a(n) for n = 1..1000
- The IMO Compendium, Problem 4, 15th Canadian Mathematical Olympiad 1983.
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
- Index to sequences related to Olympiads.
Crossrefs
Programs
-
Mathematica
Select[Range@ 150, 4 <= Mod[#, 6] <= 5 &] (* Michael De Vlieger, Mar 20 2015 *) LinearRecurrence[{1,1,-1},{4,5,10},50] (* Harvey P. Dale, Oct 16 2017 *)
-
Maxima
A047257(n):=4 + 6*floor(n/2) + mod(n,2)$ akelist(A047257(n),n,0,40); /* Martin Ettl, Oct 24 2012 */
-
PARI
a(n) = 3*n - (-1)^n \\ David Lovler, Aug 25 2022
Formula
a(n) = 4 + 6*floor(n/2) + n mod 2.
a(n) = 6*n-a(n-1)-3, with a(1)=4. - Vincenzo Librandi, Aug 05 2010
G.f.: ( x*(4+x+x^2) ) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
a(n) = 3*n - (-1)^n. - Wesley Ivan Hurt, Mar 20 2015
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(6*sqrt(3)) - log(2)/3. - Amiram Eldar, Dec 14 2021
E.g.f.: 1 + 3*x*exp(x) - exp(-x). - David Lovler, Aug 25 2022
Comments