A047260 Numbers that are congruent to {0, 1, 4, 5} mod 6.
0, 1, 4, 5, 6, 7, 10, 11, 12, 13, 16, 17, 18, 19, 22, 23, 24, 25, 28, 29, 30, 31, 34, 35, 36, 37, 40, 41, 42, 43, 46, 47, 48, 49, 52, 53, 54, 55, 58, 59, 60, 61, 64, 65, 66, 67, 70, 71, 72, 73, 76, 77, 78, 79, 82, 83, 84, 85, 88, 89, 90, 91, 94, 95, 96, 97
Offset: 1
Links
- Guenther Schrack, Table of n, a(n) for n = 1..10006
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
GAP
Filtered([0..100],n->n mod 6 = 0 or n mod 6 = 1 or n mod 6 = 4 or n mod 6 = 5); # Muniru A Asiru, Feb 19 2019
-
Magma
[n : n in [0..100] | n mod 6 in [0, 1, 4, 5]]; // Wesley Ivan Hurt, May 21 2016
-
Maple
A047260:=n->(6*n-5-I^(2*n)+(1-I)*I^(-n)+(1+I)*I^n)/4: seq(A047260(n), n=1..100); # Wesley Ivan Hurt, May 21 2016
-
Mathematica
Table[(6n-5-I^(2n)+(1-I)*I^(-n)+(1+I)*I^n)/4, {n, 80}] (* Wesley Ivan Hurt, May 21 2016 *) LinearRecurrence[{1,0,0,1,-1},{0,1,4,5,6},70] (* Harvey P. Dale, Sep 20 2023 *)
-
PARI
my(x='x+O('x^70)); concat([0], Vec(x^2*(1+3*x+x^2+x^3)/((1-x)*(1-x^4)))) \\ G. C. Greubel, Feb 16 2019
-
Sage
a=(x^2*(1+3*x+x^2+x^3)/((1-x)*(1-x^4))).series(x, 72).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Feb 16 2019
Formula
G.f.: x^2*(1+3*x+x^2+x^3) / ((1+x)*(1+x^2)*(1-x)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, May 21 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (6*n - 5 - i^(2*n) + (1-i)*i^(-n) + (1+i)*i^n)/4 where i=sqrt(-1).
From Guenther Schrack, Feb 13 2019: (Start)
a(n) = (6*n - 5 - (-1)^n + 2*(-1)^(n*(n + 1)/2))/4.
a(n) = a(n-4) + 6, a(1)=0, a(2)=1, a(3)=4, a(4)=5, for n > 4.
a(-n) = -A047269(n+2). (End)
Sum_{n>=2} (-1)^n/a(n) = sqrt(3)*Pi/36 + log(3)/4 + 2*log(2)/3. - Amiram Eldar, Dec 16 2021
Extensions
More terms from Wesley Ivan Hurt, May 21 2016
Comments