cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047263 Numbers that are congruent to {0, 1, 2, 4, 5} mod 6.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 82, 83, 84, 85
Offset: 1

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

Complement of A016945. - R. J. Mathar, Feb 25 2008
Nonnegative integers m such that floor(2*m^2/12) = 2*floor(m^2/12). See the Crossrefs field of A265187 for similar sequences. - Bruno Berselli, Dec 08 2015
Also, numbers k such that Fibonacci(k) mod 4 = 0, 1 or 3. - Bruno Berselli, Oct 17 2017

Crossrefs

Programs

  • Magma
    [n : n in [0..100] | n mod 6 in [0, 1, 2, 4, 5]]; // Wesley Ivan Hurt, Aug 16 2016
    
  • Maple
    for n from 0 to 200 do if n mod 6 <> 3 then printf(`%d,`,n) fi: od:
    A047263:=n->6*floor(n/5)+[0, 1, 2, 4, 5][(n mod 5)+1]: seq(A047263(n), n=0..100); # Wesley Ivan Hurt, Aug 16 2016
  • Mathematica
    Select[Range[0,100], Mod[#,6]!=3&] (* Harvey P. Dale, May 17 2011 *)
    LinearRecurrence[{1,0,0,0,1,-1},{0,1,2,4,5,6},90] (* Harvey P. Dale, Oct 05 2014 *)
  • PARI
    first(n) = {select(x->(x%6!=3), vector(6*n\5, i, i-1))} \\ David A. Corneth, Oct 17 2017

Formula

O.g.f.: x*(x^2+1)*(x^2+x+1)/((x-1)^2*(x^4+x^3+x^2+x+1)). - R. J. Mathar, Feb 25 2008
a(n) = a(n-5) + 6 for n > 5. - R. J. Mathar, Feb 25 2008
a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6. - Harvey P. Dale, Oct 05 2014
From Wesley Ivan Hurt, Aug 16 2016: (Start)
a(n) = n + floor((n-4)/5).
a(n) = (6*n - 4 - ((n+1) mod 5))/5.
a(5k) = 6k-1, a(5k-1) = 6k-2, a(5k-2) = 6k-4, a(5k-3) = 6k-5, a(5k-4) = 6k-6. (End)
Sum_{n>=2} (-1)^n/a(n) = log(2+sqrt(3))/sqrt(3) - log(2)/6. - Amiram Eldar, Dec 17 2021

Extensions

More terms from James Sellers, Feb 19 2001