A047263 Numbers that are congruent to {0, 1, 2, 4, 5} mod 6.
0, 1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 82, 83, 84, 85
Offset: 1
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1).
Programs
-
Magma
[n : n in [0..100] | n mod 6 in [0, 1, 2, 4, 5]]; // Wesley Ivan Hurt, Aug 16 2016
-
Maple
for n from 0 to 200 do if n mod 6 <> 3 then printf(`%d,`,n) fi: od: A047263:=n->6*floor(n/5)+[0, 1, 2, 4, 5][(n mod 5)+1]: seq(A047263(n), n=0..100); # Wesley Ivan Hurt, Aug 16 2016
-
Mathematica
Select[Range[0,100], Mod[#,6]!=3&] (* Harvey P. Dale, May 17 2011 *) LinearRecurrence[{1,0,0,0,1,-1},{0,1,2,4,5,6},90] (* Harvey P. Dale, Oct 05 2014 *)
-
PARI
first(n) = {select(x->(x%6!=3), vector(6*n\5, i, i-1))} \\ David A. Corneth, Oct 17 2017
Formula
O.g.f.: x*(x^2+1)*(x^2+x+1)/((x-1)^2*(x^4+x^3+x^2+x+1)). - R. J. Mathar, Feb 25 2008
a(n) = a(n-5) + 6 for n > 5. - R. J. Mathar, Feb 25 2008
a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6. - Harvey P. Dale, Oct 05 2014
From Wesley Ivan Hurt, Aug 16 2016: (Start)
a(n) = n + floor((n-4)/5).
a(n) = (6*n - 4 - ((n+1) mod 5))/5.
a(5k) = 6k-1, a(5k-1) = 6k-2, a(5k-2) = 6k-4, a(5k-3) = 6k-5, a(5k-4) = 6k-6. (End)
Sum_{n>=2} (-1)^n/a(n) = log(2+sqrt(3))/sqrt(3) - log(2)/6. - Amiram Eldar, Dec 17 2021
Extensions
More terms from James Sellers, Feb 19 2001
Comments