A047280 Numbers that are congruent to {3, 6} mod 7.
3, 6, 10, 13, 17, 20, 24, 27, 31, 34, 38, 41, 45, 48, 52, 55, 59, 62, 66, 69, 73, 76, 80, 83, 87, 90, 94, 97, 101, 104, 108, 111, 115, 118, 122, 125, 129, 132, 136, 139, 143, 146, 150, 153, 157, 160, 164, 167, 171, 174, 178, 181, 185, 188, 192, 195, 199, 202
Offset: 1
Links
- David Lovler, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Maple
A047280:=n->4*n-1-floor(n/2); seq(A047280(k),k=1..100); # Wesley Ivan Hurt, Oct 16 2013
-
Mathematica
Flatten[#+{3,6}&/@(7Range[0,30])] (* Harvey P. Dale, Jan 11 2011 *)
-
PARI
a(n) = 4*n - 1 - floor(n/2) \\ David Lovler, Sep 14 2022
Formula
a(n) = 7*n - a(n-1) - 5 with n > 1, a(1)=3. - Vincenzo Librandi, Aug 05 2010
G.f.: x*(3 + 3*x + x^2) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Oct 25 2011
a(n) = 3*n + ceiling(n/2) - 1. - Arkadiusz Wesolowski, Sep 20 2012
a(n) = 4n - 1 - floor(n/2). - Wesley Ivan Hurt, Oct 16 2013
E.g.f.: 1 + ((14*x - 3)*exp(x) - exp(-x))/4. - David Lovler, Sep 14 2022