cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047292 Numbers that are congruent to {2, 4, 6} mod 7.

Original entry on oeis.org

2, 4, 6, 9, 11, 13, 16, 18, 20, 23, 25, 27, 30, 32, 34, 37, 39, 41, 44, 46, 48, 51, 53, 55, 58, 60, 62, 65, 67, 69, 72, 74, 76, 79, 81, 83, 86, 88, 90, 93, 95, 97, 100, 102, 104, 107, 109, 111, 114, 116, 118, 121, 123, 125, 128, 130, 132, 135, 137, 139, 142, 144
Offset: 1

Views

Author

Keywords

Programs

  • Magma
    I:=[2, 4, 6, 9]; [n le 4 select I[n] else Self(n-1)+Self(n-3)-Self(n-4): n in [1..70]]; // Vincenzo Librandi, Apr 26 2012
    
  • Maple
    A047292:=n->(21*n-6-3*cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/9: seq(A047292(n), n=1..100); # Wesley Ivan Hurt, Jun 10 2016
  • Mathematica
    Select[Range[0,125], MemberQ[{2,4,6}, Mod[#,7]]&] (* Vincenzo Librandi, Apr 26 2012 *)
    LinearRecurrence[{1,0,1,-1},{2,4,6,9},70] (* Harvey P. Dale, Feb 06 2019 *)
  • PARI
    a(n) = 2*n + ceil(n/3) - 1; /* Joerg Arndt, Sep 20 2012 */

Formula

a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = floor((7*n-1)/3). [Gary Detlefs, May 14 2011]
G.f.: x*(2+2*x+2*x^2+x^3)/((1-x)^2*(1+x+x^2)). [Colin Barker, Mar 13 2012]
a(n) = 2*n + ceiling(n/3) - 1. - Arkadiusz Wesolowski, Sep 19 2012
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = (21*n-6-3*cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 7k-1, a(3k-1) = 7k-3, a(3k-2) = 7k-5. (End)