A047292 Numbers that are congruent to {2, 4, 6} mod 7.
2, 4, 6, 9, 11, 13, 16, 18, 20, 23, 25, 27, 30, 32, 34, 37, 39, 41, 44, 46, 48, 51, 53, 55, 58, 60, 62, 65, 67, 69, 72, 74, 76, 79, 81, 83, 86, 88, 90, 93, 95, 97, 100, 102, 104, 107, 109, 111, 114, 116, 118, 121, 123, 125, 128, 130, 132, 135, 137, 139, 142, 144
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..5000
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Programs
-
Magma
I:=[2, 4, 6, 9]; [n le 4 select I[n] else Self(n-1)+Self(n-3)-Self(n-4): n in [1..70]]; // Vincenzo Librandi, Apr 26 2012
-
Maple
A047292:=n->(21*n-6-3*cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/9: seq(A047292(n), n=1..100); # Wesley Ivan Hurt, Jun 10 2016
-
Mathematica
Select[Range[0,125], MemberQ[{2,4,6}, Mod[#,7]]&] (* Vincenzo Librandi, Apr 26 2012 *) LinearRecurrence[{1,0,1,-1},{2,4,6,9},70] (* Harvey P. Dale, Feb 06 2019 *)
-
PARI
a(n) = 2*n + ceil(n/3) - 1; /* Joerg Arndt, Sep 20 2012 */
Formula
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = floor((7*n-1)/3). [Gary Detlefs, May 14 2011]
G.f.: x*(2+2*x+2*x^2+x^3)/((1-x)^2*(1+x+x^2)). [Colin Barker, Mar 13 2012]
a(n) = 2*n + ceiling(n/3) - 1. - Arkadiusz Wesolowski, Sep 19 2012
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = (21*n-6-3*cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 7k-1, a(3k-1) = 7k-3, a(3k-2) = 7k-5. (End)