A047299 Numbers that are congruent to {0, 1, 3, 4, 6} mod 7.
0, 1, 3, 4, 6, 7, 8, 10, 11, 13, 14, 15, 17, 18, 20, 21, 22, 24, 25, 27, 28, 29, 31, 32, 34, 35, 36, 38, 39, 41, 42, 43, 45, 46, 48, 49, 50, 52, 53, 55, 56, 57, 59, 60, 62, 63, 64, 66, 67, 69, 70, 71, 73, 74, 76, 77, 78
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1).
Crossrefs
Cf. A007530 (prime quadruples).
Programs
-
Magma
[Floor((7*n-5)/5): n in [1..100]]; // Zaki Khandaker, Jun 21 2015
-
Mathematica
a[n_]:=Floor[(7n-5)/5]; Table[a[i],{i,1,30}]; (* Lorenz H. Menke, Jr., Jun 19 2013 *) LinearRecurrence[{1,0,0,0,1,-1},{0,1,3,4,6,7},80] (* Harvey P. Dale, Jan 24 2025 *)
-
PARI
a(n)=(7*n-5)\5 \\ Charles R Greathouse IV, Jun 19 2013
Formula
G.f.: x^2*(1+2*x+x^2+2*x^3+x^4) / ( (x^4+x^3+x^2+x+1)*(x-1)^2 ). - R. J. Mathar, Oct 25 2011
a(n) = floor((7n-5)/5). - Lorenz H. Menke, Jr., Jun 19 2013
Extensions
Formula and programs adapted to offset 1 by Michel Marcus, May 30 2020
Comments