A047345 Numbers that are congruent to {0, 4} mod 7.
0, 4, 7, 11, 14, 18, 21, 25, 28, 32, 35, 39, 42, 46, 49, 53, 56, 60, 63, 67, 70, 74, 77, 81, 84, 88, 91, 95, 98, 102, 105, 109, 112, 116, 119, 123, 126, 130, 133, 137, 140, 144, 147, 151, 154, 158, 161, 165, 168, 172, 175, 179, 182, 186, 189, 193
Offset: 1
Links
- David Lovler, Table of n, a(n) for n = 1..1000
- Wikipedia, Minesweeper.
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Maple
A047345:=n->ceil(7*(n-1)/2); seq(A047345(n), n=1..100); # Wesley Ivan Hurt, Mar 31 2014
-
Mathematica
Table[Ceiling[7 (n - 1)/2], {n, 100}] (* Wesley Ivan Hurt, Mar 31 2014 *)
-
PARI
forstep(n=0,200,[4,3],print1(n", ")) \\ Charles R Greathouse IV, Oct 17 2011
Formula
a(n) = ceiling(7*(n-1)/2).
a(n) = 7*n - a(n-1) - 10 for n>1, a(1)=0. - Vincenzo Librandi, Aug 05 2010
From R. J. Mathar, Oct 08 2011: (Start)
a(n) = 7*n/2 - 13/4 + (-1)^n/4.
G.f.: x^2*(4 + 3*x) / ((1 + x)*(x - 1)^2). (End)
a(n+1) = Sum_{k>=0} A030308(n,k)*b(k), with b(0) = 4, b(k) = A005009(k-1) = 7*2^(k-1), and k>0. - Philippe Deléham, Oct 17 2011.
a(n) = 4*(n - 1) - floor((n - 1)/2). - Wesley Ivan Hurt, Jun 14 2013
a(n) = 2*(n - 1) + floor((3*n - 2 - (n mod 2))/2). - Wesley Ivan Hurt, Mar 31 2014
E.g.f.: 3 + ((14*x - 13)*exp(x) + exp(-x))/4. - David Lovler, Aug 31 2022
Comments