cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A030123 Most likely total for a roll of n 6-sided dice, choosing the smallest if there is a choice.

Original entry on oeis.org

0, 1, 7, 10, 14, 17, 21, 24, 28, 31, 35, 38, 42, 45, 49, 52, 56, 59, 63, 66, 70, 73, 77, 80, 84, 87, 91, 94, 98, 101, 105, 108, 112, 115, 119, 122, 126, 129, 133, 136, 140, 143, 147, 150, 154, 157, 161, 164, 168, 171, 175, 178, 182, 185, 189, 192
Offset: 0

Views

Author

Keywords

Comments

In fact ceiling(7n/2) is just as likely as floor(7n/2), so sequence could equally well be A047345. - Henry Bottomley, Jan 19 2001. a(1) is the only exception to this rule. - Dmitry Kamenetsky, Nov 03 2017

Crossrefs

Cf. A047355.

Programs

Formula

a(n) = floor(7*n/2) for n >= 2.
From Colin Barker, Jun 09 2013: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3) for n >= 5.
G.f.: x - x^2 * (3*x^2-3*x-7) / ((x-1)^2*(x+1)). (End)

Extensions

a(0) and a(1) added by Dmitry Kamenetsky, Nov 03 2017

A302928 Maximum number of 4's possible in an infinite Minesweeper grid with n mines.

Original entry on oeis.org

0, 0, 0, 2, 2, 4, 6, 6, 7, 8, 10, 12, 12, 13, 14, 16, 18, 18, 19, 21, 22, 24, 24, 26, 28, 30, 30, 31, 33, 34, 36, 36
Offset: 1

Views

Author

Dmitry Kamenetsky, Apr 16 2018

Keywords

Comments

Question: what is the maximum value possible for (a(n) - n)? The current record is 5, which occurs at n=31.
There is no maximum. We can take k copies of the 17-mine configuration and place them sufficiently far apart to get 18k fours. So a(17k) - 17k >= 18k - 17k = k can get arbitrarily large. A possibly more interesting question is to ask about the maximum ratio a(n)/n. - Yevhenii Diomidov, Jan 19 2022

Crossrefs

A302929 Maximum number of 5's possible in an infinite Minesweeper grid with n mines.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 2, 4, 4, 5, 6, 6, 7, 8, 10, 10, 11, 12, 13, 14, 15, 16, 16, 17, 18, 20, 20, 22, 22, 23, 24, 26
Offset: 1

Views

Author

Dmitry Kamenetsky, Apr 16 2018

Keywords

Crossrefs

A302930 Maximum number of 6's possible in an infinite Minesweeper grid with n mines.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 10, 10, 11, 12, 12, 13, 14, 15, 15, 16, 17, 18
Offset: 1

Views

Author

Dmitry Kamenetsky, Apr 16 2018

Keywords

Crossrefs

A302931 Maximum number of 7's possible in an infinite Minesweeper grid with n mines.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 9, 9, 10
Offset: 1

Views

Author

Dmitry Kamenetsky, Apr 16 2018

Keywords

Crossrefs

A140869 Triangle read by rows where T(m,n) = floor((2mn+m+n-2)/2), m >= n >= 1.

Original entry on oeis.org

1, 2, 5, 4, 7, 11, 5, 10, 14, 19, 7, 12, 18, 23, 29, 8, 15, 21, 28, 34, 41, 10, 17, 25, 32, 40, 47, 55, 11, 20, 28, 37, 45, 54, 62, 71, 13, 22, 32, 41, 51, 60, 70, 79, 89, 14, 25, 35, 46, 56, 67, 77, 88, 98, 109, 16, 27, 39, 50, 62, 73, 85, 96, 108, 119, 131, 17, 30, 42, 55, 67, 80, 92, 105, 117, 130, 142, 155
Offset: 1

Views

Author

Vincenzo Librandi, Jan 16 2009

Keywords

Comments

Conjecture: If h does not belong to the sequence, then 4*h+5 is prime. - Vincenzo Librandi, Nov 18 2012
First column: A001651; second column: A047215; third column: A047345. - Vincenzo Librandi, Nov 18 2012

Examples

			Triangle begins:
1;
2,  5;
4,  7,  11;
5,  10, 14, 19;
7,  12, 18, 23, 29;
8,  15, 21, 28, 34, 41;
10, 17, 25, 32, 40, 47, 55; etc.
		

Crossrefs

Programs

A238290 a(n+1) = a(n) + 6 + 2*(n - 2*floor(n/2)) for n > 0, a(0) = 0.

Original entry on oeis.org

0, 8, 14, 22, 28, 36, 42, 50, 56, 64, 70, 78, 84, 92, 98, 106, 112, 120, 126, 134, 140, 148, 154, 162, 168, 176, 182, 190, 196, 204, 210, 218, 224, 232, 238, 246, 252, 260, 266, 274, 280, 288, 294, 302, 308, 316, 322, 330, 336, 344, 350, 358, 364, 372, 378
Offset: 0

Views

Author

Jose Eduardo Blazek, Feb 22 2014

Keywords

Examples

			G.f.: 8*x + 14*x^2 + 22*x^3 + 28*x^4 + 36*x^5 + 42*x^6 + 50*x^7 + 56*x^8 + ...
		

Crossrefs

Cf. A047345.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(2*x*(4+3*x)/((1-x)*(1-x^2)))); // G. C. Greubel, Aug 07 2018
  • Mathematica
    CoefficientList[Series[2 x (4 + 3 x)/((1 - x) (1 - x^2)), {x, 0, 80}], x] (* Vincenzo Librandi, Feb 26 2014 *)
    Table[(14 n - (-1)^n + 1)/2, {n, 0, 60}] (* Bruno Berselli, Feb 26 2014 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(2*x*(4+3*x)/((1-x)*(1-x^2)))) \\ G. C. Greubel, Aug 07 2018
    

Formula

a(n) = floor((2*n+1)/4) + 2*floor((2*n+1)/2) + 3*floor(3*(2*n+1)/4).
a(n) = 8*floor((n+1)/2) + 6*floor(n/2).
G.f.: 2 * x * (4 + 3*x) / ((1 - x) * (1 - x^2)). - Michael Somos, Feb 24 2014
a(n) = 2*A047345(n+1) = (14*n - (-1)^n + 1)/2. - Bruno Berselli, Feb 26 2014
E.g.f.: 7*exp(x)*x + sinh(x). - Stefano Spezia, May 15 2021

A047291 Numbers that are congruent to {0, 1, 4, 6} mod 7.

Original entry on oeis.org

0, 1, 4, 6, 7, 8, 11, 13, 14, 15, 18, 20, 21, 22, 25, 27, 28, 29, 32, 34, 35, 36, 39, 41, 42, 43, 46, 48, 49, 50, 53, 55, 56, 57, 60, 62, 63, 64, 67, 69, 70, 71, 74, 76, 77, 78, 81, 83, 84, 85, 88, 90, 91, 92, 95, 97, 98, 99, 102, 104, 105, 106, 109, 111
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[0, 1, 4, 6, 7]; [n le 5 select I[n] else Self(n-1)+Self(n-4)-Self(n-5): n in [1..70]]; // Vincenzo Librandi, Apr 26 2012
    
  • Maple
    A047291:=n->(-13-(-1)^n+(3-I)*(-I)^n+(3+I)*I^n+14*n)/8: seq(A047291(n), n=1..100); # Wesley Ivan Hurt, Jun 01 2016
  • Mathematica
    Select[Range[0,120], MemberQ[{0,1,4,6}, Mod[#,7]]&] (* Vincenzo Librandi, Apr 26 2012 *)
    LinearRecurrence[{1,0,0,1,-1},{0,1,4,6,7},100] (* G. C. Greubel, Jun 01 2016 *)
  • PARI
    x='x+O('x^100); concat(0, Vec(x^2*(1+3*x+2*x^2+x^3)/((1-x)^2*(1+x)*(1+x^2)))) \\ Altug Alkan, Dec 24 2015

Formula

From Colin Barker, Mar 13 2012: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
G.f.: x^2*(1 + 3*x + 2*x^2 + x^3)/((1-x)^2*(1+x)*(1+x^2)). (End)
a(n) = (-13 - (-1)^n + (3-i)*(-i)^n + (3+i)*i^n + 14*n)/8 where i=sqrt(-1). - Colin Barker, May 14 2012
a(2k) = A047336(k), a(2k-1) = A047345(k). - Wesley Ivan Hurt, Jun 01 2016
E.g.f.: (4 - sin(x) + 3*cos(x) + (7*x - 6)*sinh(x) + 7*(x - 1)*cosh(x))/4. - Ilya Gutkovskiy, Jun 01 2016

A047293 Numbers that are congruent to {0, 2, 4, 6} mod 7.

Original entry on oeis.org

0, 2, 4, 6, 7, 9, 11, 13, 14, 16, 18, 20, 21, 23, 25, 27, 28, 30, 32, 34, 35, 37, 39, 41, 42, 44, 46, 48, 49, 51, 53, 55, 56, 58, 60, 62, 63, 65, 67, 69, 70, 72, 74, 76, 77, 79, 81, 83, 84, 86, 88, 90, 91, 93, 95, 97, 98, 100, 102, 104, 105, 107, 109, 111
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = floor(ceiling((7n + 2)/2)/2).
a(n) = 2n-2-floor((n-1)/4). - Gary Detlefs, Mar 27 2010
From Colin Barker, Mar 13 2012: (Start)
a(n) = a(n-1)+a(n-4)-a(n-5) for n>5.
G.f.: x^2*(2+2*x+2*x^2+x^3)/((1-x)^2*(1+x)*(1+x^2)). (End)
From Wesley Ivan Hurt, May 21 2016: (Start)
a(n) = (14n-11+i^(2n)+(1-i)*i^(-n)+(1+i)*i^n)/8 where i=sqrt(-1).
a(2n) = A047276(n), a(2n-1) = A047345(n). (End)

A047297 Numbers that are congruent to {0, 3, 4, 6} mod 7.

Original entry on oeis.org

0, 3, 4, 6, 7, 10, 11, 13, 14, 17, 18, 20, 21, 24, 25, 27, 28, 31, 32, 34, 35, 38, 39, 41, 42, 45, 46, 48, 49, 52, 53, 55, 56, 59, 60, 62, 63, 66, 67, 69, 70, 73, 74, 76, 77, 80, 81, 83, 84, 87, 88, 90, 91, 94, 95, 97, 98, 101, 102, 104, 105, 108, 109, 111
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n : n in [0..150] | n mod 7 in [0, 3, 4, 6]]; // Wesley Ivan Hurt, Jun 02 2016
  • Maple
    A047297:=n->(14*n-9+3*I^(2*n)-(1+I)*I^(-n)-(1-I)*I^n)/8: seq(A047297(n), n=1..100); # Wesley Ivan Hurt, Jun 02 2016
  • Mathematica
    Table[(14n-9+3*I^(2n)-(1+I)*I^(-n)-(1-I)*I^n)/8, {n, 80}] (* Wesley Ivan Hurt, Jun 02 2016 *)

Formula

G.f.: x^2*(3+x+2*x^2+x^3) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Oct 25 2011
From Wesley Ivan Hurt, Jun 02 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (14*n-9+3*i^(2*n)-(1+i)*i^(-n)-(1-i)*i^n)/8 where i=sqrt(-1).
a(2k) = A047280(k), a(2k-1) = A047345(k). (End)
Showing 1-10 of 13 results. Next