cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047351 Numbers that are congruent to {0, 1, 2, 4} mod 7.

Original entry on oeis.org

0, 1, 2, 4, 7, 8, 9, 11, 14, 15, 16, 18, 21, 22, 23, 25, 28, 29, 30, 32, 35, 36, 37, 39, 42, 43, 44, 46, 49, 50, 51, 53, 56, 57, 58, 60, 63, 64, 65, 67, 70, 71, 72, 74, 77, 78, 79, 81, 84, 85, 86, 88, 91, 92, 93, 95, 98, 99, 100, 102, 105, 106, 107, 109, 112
Offset: 1

Views

Author

Keywords

Comments

The set of values for m such that 7i+m is a perfect square (the quadratic residues of 7 including the trivial case of k*7). - Gary Detlefs, Mar 07 2010
The product of any two terms belongs to the sequence and therefore also a(n)^2, a(n)^3, a(n)^4 etc. - Bruno Berselli, Dec 03 2012

Crossrefs

Cf. A045373 (primes), A047346, A047352.
Complement of A047327.

Programs

  • Magma
    [n : n in [0..150] | n mod 7 in [0, 1, 2, 4]]; // Wesley Ivan Hurt, Jun 01 2016
    
  • Maple
    for i from 1 to 56 do if(i mod 4=0) then print(floor(7*i-3)/4)+1) else print(floor(7*i-3)/4)) fi od; # Gary Detlefs, Mar 07 2010
    A047351:=n->n-3+(6*n+(2-I^(2*n))*(1-2*I^(n*(n+1)))+1)/8: seq(A047351(n), n=1..100); # Wesley Ivan Hurt, Jun 01 2016
  • Mathematica
    Select[Range[0,100], MemberQ[{0,1,2,4}, Mod[#,7]]&] (* or *) LinearRecurrence[{1,0,0,1,-1}, {0,1,2,4,7}, 60] (* Harvey P. Dale, Jun 04 2013 *)
  • PARI
    x='x+O('x^100); concat(0, Vec(x^2*(1+x+2*x^2+3*x^3)/((1+x)*(1+x^2)*(x-1)^2))) \\ Altug Alkan, Jun 02 2016

Formula

If n mod 4 = 0 then a(n) = floor((7*n-3)/4)+1, else a(n) = floor((7*n-3)/4). - Gary Detlefs, Mar 07 2010
G.f.: x^2*(1+x+2*x^2+3*x^3) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Dec 04 2011
a(n) = n-3+(6*n+(2-(-1)^n)(1-2*i^(n(n+1)))+1)/8, where i=sqrt(-1). - Bruno Berselli, Dec 03 2012
a(0)=0, a(1)=1, a(2)=2, a(3)=4, a(4)=7, a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. - Harvey P. Dale, Jun 04 2013
a(2k) = A047346(k), a(2k-1) = A047352(k). - Wesley Ivan Hurt, Jun 01 2016
E.g.f.: (12 + 3*sin(x) - cos(x) + (7*x - 10)*sinh(x) + (7*x - 11)*cosh(x))/4. - Ilya Gutkovskiy, Jun 02 2016