A047355 Numbers that are congruent to {0, 3} mod 7.
0, 3, 7, 10, 14, 17, 21, 24, 28, 31, 35, 38, 42, 45, 49, 52, 56, 59, 63, 66, 70, 73, 77, 80, 84, 87, 91, 94, 98, 101, 105, 108, 112, 115, 119, 122, 126, 129, 133, 136, 140, 143, 147, 150, 154, 157, 161, 164, 168, 171, 175, 178, 182, 185, 189, 192, 196, 199, 203
Offset: 1
Links
- David Lovler, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Haskell
a047355 n = a047355_list !! (n-1) a047355_list = scanl (+) 0 a010702_list -- Reinhard Zumkeller, Jul 05 2012
-
Maple
A047355:=n->(14*n - (-1)^n - 15)/4; seq(A047355(n), n=1..100); # Wesley Ivan Hurt, Jan 30 2014
-
Mathematica
Table[(14n - (-1)^n - 15)/4, {n, 100}] (* Wesley Ivan Hurt, Jan 30 2014 *)
-
PARI
a(n)=n\2*7 - 4 + n%2*4 \\ Charles R Greathouse IV, Aug 01 2016
Formula
a(n) = a(n-2) + 7 = a(n-1) + a(n-2) - a(n-3). - Henry Bottomley, Jan 19 2001
From Bruno Berselli, Sep 12 2011: (Start)
G.f.: x^2*(3 + 4*x)/((1 + x)*(1 - x)^2).
a(n) = (14*n - (-1)^n - 15)/4. (End)
a(n) = 2*n - 2 + floor((3*n - 3)/2). - Wesley Ivan Hurt, Jan 30 2014
E.g.f.: 4 + ((14*x - 15)*exp(x) - exp(-x))/4. - David Lovler, Aug 31 2022
Comments