cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A195020 Vertex number of a square spiral in which the length of the first two edges are the legs of the primitive Pythagorean triple [3, 4, 5]. The edges of the spiral have length A195019.

Original entry on oeis.org

0, 3, 7, 13, 21, 30, 42, 54, 70, 85, 105, 123, 147, 168, 196, 220, 252, 279, 315, 345, 385, 418, 462, 498, 546, 585, 637, 679, 735, 780, 840, 888, 952, 1003, 1071, 1125, 1197, 1254, 1330, 1390, 1470, 1533, 1617, 1683, 1771, 1840, 1932, 2004, 2100
Offset: 0

Views

Author

Omar E. Pol, Sep 07 2011 - Sep 12 2011

Keywords

Comments

Zero together with the partial sums of A195019.
The spiral contains infinitely many Pythagorean triples in which the hypotenuses on the main diagonal are the positives A008587. The vertices on the main diagonal are the numbers A024966 = (3+4)*A000217 = 7*A000217, where both 3 and 4 are the first two edges in the spiral. The distance "a" between nearest edges that are perpendicular to the initial edge of the spiral is 3, while the distance "b" between nearest edges that are parallel to the initial edge is 4, so the distance "c" between nearest vertices on the same axis is 5 because from the Pythagorean theorem we can write c = (a^2+b^2)^(1/2) = sqrt(3^2+4^2) = sqrt(9+16) = sqrt(25) = 5.
Let an array have m(0,n)=m(n,0)=n*(n-1)/2 and m(n,n)=n*(n+1)/2. The first n+1 terms in row(n) are the numbers in the closed interval m(0,n) to m(n,n). The terms in column(n) are the same from m(n,0) to m(n,n). The first few antidiagonals are 0; 0,0; 1,1,1; 3,2,2,3; 6,4,3,4,6; 10,7,5,5,7,10. a(n) is the difference between the sum of the terms in the n+1 X n+1 matrices and those in the n X n matrices. - J. M. Bergot, Jul 05 2013 [The first five rows are: 0,0,1,3,6; 0,1,2,4,7; 1,2,3,5,8; 3,4,5,6,9; 6,7,8,9,10]

Crossrefs

Programs

  • Magma
    [(2*n*(7*n+13)+(2*n-5)*(-1)^n+5)/16: n in [0..50]]; // Vincenzo Librandi, Oct 14 2011
  • Mathematica
    With[{r = Range[50]}, Join[{0}, Accumulate[Riffle[3*r, 4*r]]]] (* or *)
    LinearRecurrence[{1, 2, -2, -1, 1}, {0, 3, 7, 13, 21}, 100] (* Paolo Xausa, Feb 09 2024 *)

Formula

From Bruno Berselli, Oct 13 2011: (Start)
G.f.: x*(3+4*x)/((1+x)^2*(1-x)^3).
a(n) = (1/2)*A004526(n+2)*A047335(n+1) = (2*n*(7*n+13) + (2*n-5)*(-1)^n+5)/16.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) - a(n-2) = A047355(n+1). (End)

A195019 Multiples of 3 and of 4 interleaved: a(2*n-1) = 3*n, a(2*n) = 4*n.

Original entry on oeis.org

3, 4, 6, 8, 9, 12, 12, 16, 15, 20, 18, 24, 21, 28, 24, 32, 27, 36, 30, 40, 33, 44, 36, 48, 39, 52, 42, 56, 45, 60, 48, 64, 51, 68, 54, 72, 57, 76, 60, 80, 63, 84, 66, 88, 69, 92, 72, 96, 75, 100, 78, 104, 81, 108, 84, 112, 87, 116, 90, 120, 93, 124, 96, 128
Offset: 1

Views

Author

Omar E. Pol, Sep 07 2011, Sep 12 2011

Keywords

Comments

First differences of A195020.
a(n) is also the length of the n-th edge of a square spiral in which the first two edges are the legs of the primitive Pythagorean triple [3, 4, 5]. The spiral contains infinitely many Pythagorean triples in which the hypotenuses are the positives A008587. Zero together with partial sums give A195020; the vertices of the spiral.

Crossrefs

Programs

  • Magma
    [((n-3)*(-1)^n+7*n+3)/4: n in [1..60]]; // Vincenzo Librandi, Sep 12 2011
  • Mathematica
    Table[((n-3)*(-1)^n + 7*n + 3)/4, {n,1,50}] (* G. C. Greubel, Aug 19 2017 *)
  • PARI
    a(n)=(n+1)\2*(4-n%2)  \\ M. F. Hasler, Sep 08 2011
    

Formula

pair(3*n, 4*n).
a(2*n-1) = 3*n, a(2*n) = 4*n. - M. F. Hasler, Sep 08 2011
G.f.: x*(3+4*x) / ( (x-1)^2*(1+x)^2 ). - R. J. Mathar, Sep 09 2011
From Bruno Berselli, Sep 12 2011: (Start)
a(n) = ((n-3)*(-1)^n + 7*n + 3)/4.
a(n) + a(n+1) = A047355(n+2). (End)
E.g.f.: (1/4)*((3 + 7*x)*exp(x) - (3 + x)*exp(-x)). - G. C. Greubel, Aug 19 2017

A010702 Period 2: repeat (3,4).

Original entry on oeis.org

3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3
Offset: 0

Views

Author

Keywords

Comments

Continued fraction expansion of A176102. - R. J. Mathar, Mar 08 2012
Also decimal expansion of 34/99. - Nicolas Bělohoubek, Nov 12 2021

Crossrefs

Cf. A047355 (partial sums), A176102.

Programs

Formula

G.f.: (3+4*x)/(1-x^2). - Jaume Oliver Lafont, Mar 20 2009
a(n) = floor((n+1)*7/2) - floor((n)*7/2). - Hailey R. Olafson, Jul 23 2014
a(n) = 3 + (n mod 2) = 4 - ((n+1) mod 2). - Wesley Ivan Hurt, Jul 24 2014
From Nicolas Bělohoubek, Nov 12 2021: (Start)
a(n) = 12/a(n-1). See also A010696.
a(n) = 7 - a(n-1). See also A010695. (End)
a(n) = (7-(-1)^n)/2. - Aaron J Grech, Jul 28 2024

A030123 Most likely total for a roll of n 6-sided dice, choosing the smallest if there is a choice.

Original entry on oeis.org

0, 1, 7, 10, 14, 17, 21, 24, 28, 31, 35, 38, 42, 45, 49, 52, 56, 59, 63, 66, 70, 73, 77, 80, 84, 87, 91, 94, 98, 101, 105, 108, 112, 115, 119, 122, 126, 129, 133, 136, 140, 143, 147, 150, 154, 157, 161, 164, 168, 171, 175, 178, 182, 185, 189, 192
Offset: 0

Views

Author

Keywords

Comments

In fact ceiling(7n/2) is just as likely as floor(7n/2), so sequence could equally well be A047345. - Henry Bottomley, Jan 19 2001. a(1) is the only exception to this rule. - Dmitry Kamenetsky, Nov 03 2017

Crossrefs

Cf. A047355.

Programs

Formula

a(n) = floor(7*n/2) for n >= 2.
From Colin Barker, Jun 09 2013: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3) for n >= 5.
G.f.: x - x^2 * (3*x^2-3*x-7) / ((x-1)^2*(x+1)). (End)

Extensions

a(0) and a(1) added by Dmitry Kamenetsky, Nov 03 2017

A047392 Numbers that are congruent to {0, 1, 3, 5} mod 7.

Original entry on oeis.org

0, 1, 3, 5, 7, 8, 10, 12, 14, 15, 17, 19, 21, 22, 24, 26, 28, 29, 31, 33, 35, 36, 38, 40, 42, 43, 45, 47, 49, 50, 52, 54, 56, 57, 59, 61, 63, 64, 66, 68, 70, 71, 73, 75, 77, 78, 80, 82, 84, 85, 87, 89, 91, 92, 94, 96, 98, 99, 101, 103, 105, 106, 108, 110
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A047371: n + floor(3*n/4-1/2) - 1; A047379: n + floor(3*n/4-1/4) - 1.

Programs

  • Magma
    [n: n in [0..100] | n mod 7 in [0, 1, 3, 5]]; // Wesley Ivan Hurt, May 21 2016
  • Maple
    A047392:=n->(14*n-17-I^(2*n)+(1+I)*I^(-n)+(1-I)*I^n)/8: seq(A047392(n), n=1..100); # Wesley Ivan Hurt, May 21 2016
  • Mathematica
    Table[(14n-17-I^(2n)+(1+I)*I^(-n)+(1-I)*I^n)/8, {n, 80}] (* Wesley Ivan Hurt, May 21 2016 *)
    Table[n + Floor[3 n/4 - 3/4] - 1, {n, 1, 70}] (* Bruno Berselli, Jun 15 2016 *)

Formula

G.f.: x^2*(1+2*x+2*x^2+2*x^3) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, May 21 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (14*n - 17 - i^(2*n) + (1 + i)*i^(-n) + (1 - i)*i^n)/8.
a(2k) = A047383(k), a(2k-1) = A047355(k). (End)
a(n) = n + floor(3*n/4-3/4) - 1. - Bruno Berselli, Jun 15 2016

Extensions

More terms from Wesley Ivan Hurt, May 21 2016

A198268 Round(n*sqrt(12)).

Original entry on oeis.org

0, 3, 7, 10, 14, 17, 21, 24, 28, 31, 35, 38, 42, 45, 48, 52, 55, 59, 62, 66, 69, 73, 76, 80, 83, 87, 90, 94, 97, 100, 104, 107, 111, 114, 118, 121, 125, 128, 132, 135, 139, 142, 145, 149, 152, 156, 159, 163, 166, 170, 173, 177, 180, 184, 187
Offset: 0

Views

Author

Vincenzo Librandi, Oct 24 2011

Keywords

Crossrefs

Programs

  • Magma
    [Round(n*Sqrt(12)): n in [0..60]]

A047283 Numbers that are congruent to {0, 1, 3, 6} mod 7.

Original entry on oeis.org

0, 1, 3, 6, 7, 8, 10, 13, 14, 15, 17, 20, 21, 22, 24, 27, 28, 29, 31, 34, 35, 36, 38, 41, 42, 43, 45, 48, 49, 50, 52, 55, 56, 57, 59, 62, 63, 64, 66, 69, 70, 71, 73, 76, 77, 78, 80, 83, 84, 85, 87, 90, 91, 92, 94, 97, 98, 99, 101, 104, 105, 106, 108, 111
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n : n in [0..150] | n mod 7 in [0, 1, 3, 6]]; // Wesley Ivan Hurt, May 22 2016
  • Maple
    A047283:=n->(14*n-15+I^(2*n)+(3+I)*I^(-n)+(3-I)*I^n)/8: seq(A047283(n), n=1..100); # Wesley Ivan Hurt, May 22 2016
  • Mathematica
    Select[Range[0,100], MemberQ[{0,1,3,6}, Mod[#,7]]&] (* or *) LinearRecurrence[{1,0,0,1,-1}, {0,1,3,6,7}, 60] (* Harvey P. Dale, Mar 09 2012 *)

Formula

G.f.: x^2*(1+2*x+3*x^2+x^3) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Oct 25 2011
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. - Harvey P. Dale, Mar 09 2012
From Wesley Ivan Hurt, May 22 2016: (Start)
a(n) = (14n-15+i^(2n)+(3+i)*i^(-n)+(3-i)*i^n)/8 where i=sqrt(-1).
a(2n) = A047336(n), a(2n-1) = A047355(n). (End)

Extensions

More terms from Wesley Ivan Hurt, May 22 2016

A047285 Numbers that are congruent to {0, 2, 3, 6} mod 7.

Original entry on oeis.org

0, 2, 3, 6, 7, 9, 10, 13, 14, 16, 17, 20, 21, 23, 24, 27, 28, 30, 31, 34, 35, 37, 38, 41, 42, 44, 45, 48, 49, 51, 52, 55, 56, 58, 59, 62, 63, 65, 66, 69, 70, 72, 73, 76, 77, 79, 80, 83, 84, 86, 87, 90, 91, 93, 94, 97, 98, 100, 101, 104, 105, 107, 108, 111
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n : n in [0..150] | n mod 7 in [0, 2, 3, 6]]; // Wesley Ivan Hurt, Jun 02 2016
  • Maple
    A047285:=n->(14*n-13+3*I^(2*n)+(1+I)*I^(-n)+(1-I)*I^n)/8: seq(A047285(n), n=1..100); # Wesley Ivan Hurt, Jun 02 2016
  • Mathematica
    Table[(14n-13+3*I^(2n)+(1+I)*I^(-n)+(1-I)*I^n)/8, {n, 80}] (* Wesley Ivan Hurt, Jun 02 2016 *)
    Select[Range[0,120],MemberQ[{0,2,3,6},Mod[#,7]]&] (* or *) LinearRecurrence[ {1,0,0,1,-1},{0,2,3,6,7},100] (* Harvey P. Dale, Jul 12 2020 *)

Formula

G.f.: x^2*(2+x+3*x^2+x^3) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Oct 25 2011
From Wesley Ivan Hurt, Jun 02 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (14*n-13+3*i^(2*n)+(1+i)*i^(-n)+(1-i)*i^n)/8 where i=sqrt(-1).
a(2k) = A047276(k), a(2k-1) = A047355(k). (End)

A047340 Numbers that are congruent to {0, 2, 3, 4} mod 7.

Original entry on oeis.org

0, 2, 3, 4, 7, 9, 10, 11, 14, 16, 17, 18, 21, 23, 24, 25, 28, 30, 31, 32, 35, 37, 38, 39, 42, 44, 45, 46, 49, 51, 52, 53, 56, 58, 59, 60, 63, 65, 66, 67, 70, 72, 73, 74, 77, 79, 80, 81, 84, 86, 87, 88, 91, 93, 94, 95, 98, 100, 101, 102, 105, 107, 108, 109, 112
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n : n in [0..150] | n mod 7 in [0,2,3,4]]; // Vincenzo Librandi, Feb 17 2014
  • Maple
    A047340:=n->(14*n-17-I^(2*n)-(3-I)*I^(-n)-(3+I)*I^n)/8: seq(A047340(n), n=1..100); # Wesley Ivan Hurt, May 21 2016
  • Mathematica
    Select[Range[0,100],MemberQ[{0,2,3,4},Mod[#,7]]&] (* or *) LinearRecurrence[ {1,0,0,1,-1},{0,2,3,4,7},100] (* Harvey P. Dale, Feb 16 2014 *)
    CoefficientList[Series[x (2 + x + x^2 + 3 x^3)/((1 + x) (1 + x^2) (x - 1)^2), {x, 0, 200}], x] (* Vincenzo Librandi, Feb 17 2014 *)

Formula

G.f.: x^2*(2+x+x^2+3*x^3) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Dec 04 2011
From Wesley Ivan Hurt, May 21 2016: (Start)
a(n) = a(n-1)+a(n-4)-a(n-5) for n>5.
a(n) = (14n-17-i^(2n)-(3-i)*i^(-n)-(3+i)*i^n)/8 where i=sqrt(-1).
a(2n) = A047348(n), a(2n-1) = A047355(n). (End)

Extensions

More terms from Vincenzo Librandi, Feb 17 2014

A047344 Numbers that are congruent to {0, 1, 3, 4} mod 7.

Original entry on oeis.org

0, 1, 3, 4, 7, 8, 10, 11, 14, 15, 17, 18, 21, 22, 24, 25, 28, 29, 31, 32, 35, 36, 38, 39, 42, 43, 45, 46, 49, 50, 52, 53, 56, 57, 59, 60, 63, 64, 66, 67, 70, 71, 73, 74, 77, 78, 80, 81, 84, 85, 87, 88, 91, 92, 94, 95, 98, 99, 101, 102, 105, 106, 108, 109
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n+1) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=1, b(1)=3 and b(k)=7*2^(k-2) for k>1. - Philippe Deléham, Oct 17 2011
G.f.: x^2*(1+2*x+x^2+3*x^3) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Dec 04 2011
From Wesley Ivan Hurt, May 23 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (14n-19-3*i^(2n)-(1-i)*i^(-n)-(1+i)*i^n)/8 where i=sqrt(-1).
a(2n) = A047346(n), a(2n-1) = A047355(n). (End)
E.g.f.: (12 + sin(x) - cos(x) + (7*x - 8)*sinh(x) + (7*x - 11)*cosh(x))/4. - Ilya Gutkovskiy, May 24 2016

Extensions

More terms from Wesley Ivan Hurt, May 23 2016
Showing 1-10 of 12 results. Next