A047356 Numbers that are congruent to {1, 3} mod 7.
1, 3, 8, 10, 15, 17, 22, 24, 29, 31, 36, 38, 43, 45, 50, 52, 57, 59, 64, 66, 71, 73, 78, 80, 85, 87, 92, 94, 99, 101, 106, 108, 113, 115, 120, 122, 127, 129, 134, 136, 141, 143, 148, 150, 155, 157, 162, 164, 169
Offset: 1
Links
- David Lovler, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Crossrefs
Cf. A010702.
Programs
-
Mathematica
With[{c=7 Range[0,50]},Sort[Join[c+1,c+3]]] (* or *) LinearRecurrence[ {1,1,-1},{1,3,8},100] (* Harvey P. Dale, May 29 2012 *)
-
PARI
a(n) = (14*n - 13 - 3*(-1)^n)/4 \\ David Lovler, Sep 11 2022
Formula
a(n) = 7*n - a(n-1) - 10 with n > 1, a(1)=1. - Vincenzo Librandi, Aug 05 2010
From R. J. Mathar, Oct 08 2011: (Start)
a(n) = 7*n/2 - 13/4 - 3*(-1)^n/4.
G.f.: x*(1+2*x+4*x^2) / ( (1+x)*(x-1)^2 ). (End)
E.g.f.: 4 + ((14*x - 13)*exp(x) - 3*exp(-x))/4. - David Lovler, Sep 11 2022
Comments