A047361 Numbers that are congruent to {0, 1, 2, 3} mod 7.
0, 1, 2, 3, 7, 8, 9, 10, 14, 15, 16, 17, 21, 22, 23, 24, 28, 29, 30, 31, 35, 36, 37, 38, 42, 43, 44, 45, 49, 50, 51, 52, 56, 57, 58, 59, 63, 64, 65, 66, 70, 71, 72, 73, 77, 78, 79, 80, 84, 85, 86, 87, 91, 92, 93, 94, 98, 99, 100, 101, 105, 106, 107, 108, 112
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 7 in [0..3]]; // Wesley Ivan Hurt, May 23 2016
-
Maple
A047361:=n->(14*n-23-3*I^(2*n)-(3-3*I)*I^(-n)-(3+3*I)*I^n)/8: seq(A047361(n), n=1..100); # Wesley Ivan Hurt, May 23 2016
-
Mathematica
Flatten[#+{0,1,2,3}&/@(7*Range[0,20])] (* Harvey P. Dale, Jan 17 2013 *)
-
PARI
concat(0, Vec(x^2*(1+x+x^2+4*x^3)/((1+x)*(x^2+1)*(x-1)^2) + O(x^100))) \\ Altug Alkan, Dec 09 2015
Formula
a(n) = 7*floor(n/4) + (n mod 4), with offset 0 and a(0) = 0. - Gary Detlefs, Mar 09 2010
G.f.: x^2*(1+x+x^2+4*x^3) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Dec 04 2011
From Wesley Ivan Hurt, May 23 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (14*n-23-3*i^(2*n)-(3-3*i)*i^(-n)-(3+3*i)*i^n)/8, where i=sqrt(-1).
E.g.f.: (16 + 3*(sin(x) - cos(x)) + (7*x - 10)*sinh(x) + (7*x - 13)*cosh(x))/4. - Ilya Gutkovskiy, May 24 2016
Extensions
More terms from Wesley Ivan Hurt, May 23 2016
Comments