A047410 Numbers that are congruent to {2, 4, 6} mod 8.
2, 4, 6, 10, 12, 14, 18, 20, 22, 26, 28, 30, 34, 36, 38, 42, 44, 46, 50, 52, 54, 58, 60, 62, 66, 68, 70, 74, 76, 78, 82, 84, 86, 90, 92, 94, 98, 100, 102, 106, 108, 110, 114, 116, 118, 122, 124, 126, 130, 132, 134, 138, 140, 142, 146, 148, 150, 154, 156, 158
Offset: 1
Links
- William A. Stein, Dimensions of the spaces S_k^{new}(Gamma_0(N)).
- William A. Stein, The modular forms database.
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 8 in [2, 4, 6]]; // Wesley Ivan Hurt, Jun 09 2016
-
Maple
A047410:=n->2*(12*n-6-3*cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/9: seq(A047410(n), n=1..100); # Wesley Ivan Hurt, Jun 09 2016
-
Mathematica
With[{upto=140},Complement[2*Range[upto/2],8*Range[upto/8]]] (* or *) LinearRecurrence[{1,0,1,-1}, {2,4,6,10}, 60] (* Harvey P. Dale, Oct 06 2014 *)
Formula
a(n) = 2*floor((n-1)/3) + 2*n. - Gary Detlefs, Mar 18 2010
From R. J. Mathar, Dec 05 2011: (Start)
G.f.: 2*x*(1+x)*(1+x^2) / ( (1+x+x^2)*(x-1)^2 ).
a(n) = 2*A042968(n). (End)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4, with a(1)=2, a(2)=4, a(3)=6, a(4)=10. - Harvey P. Dale, Oct 06 2014
From Wesley Ivan Hurt, Jun 09 2016: (Start)
a(n) = 2*(12*n-6-3*cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-2, a(3k-1) = 8k-4, a(3k-2) = 8k-6. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (2*sqrt(2)-1)*Pi/16. - Amiram Eldar, Dec 19 2021
E.g.f.: 2*(9 + 6*exp(x)*(2*x - 1) - exp(-x/2)*(3*cos(sqrt(3)*x/2) - sqrt(3)*sin(sqrt(3)*x/2)))/9. - Stefano Spezia, Oct 17 2022
Comments