cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A047395 Numbers that are congruent to {0, 2, 6} mod 8.

Original entry on oeis.org

0, 2, 6, 8, 10, 14, 16, 18, 22, 24, 26, 30, 32, 34, 38, 40, 42, 46, 48, 50, 54, 56, 58, 62, 64, 66, 70, 72, 74, 78, 80, 82, 86, 88, 90, 94, 96, 98, 102, 104, 106, 110, 112, 114, 118, 120, 122, 126, 128, 130, 134, 136, 138, 142, 144, 146, 150, 152, 154, 158
Offset: 1

Views

Author

Keywords

Comments

The members of this sequence together with the members of A017113 give the even numbers. - Wesley Ivan Hurt, Apr 01 2014

Crossrefs

Programs

Formula

From R. J. Mathar, Dec 05 2011: (Start)
G.f.: 2*x^2*(1+x)^2 / ((1+x+x^2)*(x-1)^2).
a(n) = 2 * A042965(n). (End)
From Wesley Ivan Hurt, Jun 13 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = 2*(12*n-12+3*cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-2, a(3k-1) = 8k-6, a(3k-2) = 8k-8. (End)
a(n) = 2*(n - 1 + floor(n/3)). - Wolfdieter Lang, Sep 11 2021
Sum_{n>=2} (-1)^n/a(n) = sqrt(2)*log(sqrt(2)+2)/4 - (sqrt(2)-1)*log(2)/8. - Amiram Eldar, Dec 19 2021

A047464 Numbers that are congruent to {0, 2, 4} mod 8.

Original entry on oeis.org

0, 2, 4, 8, 10, 12, 16, 18, 20, 24, 26, 28, 32, 34, 36, 40, 42, 44, 48, 50, 52, 56, 58, 60, 64, 66, 68, 72, 74, 76, 80, 82, 84, 88, 90, 92, 96, 98, 100, 104, 106, 108, 112, 114, 116, 120, 122, 124, 128, 130, 132, 136, 138, 140, 144, 146, 148, 152, 154, 156
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n : n in [0..150] | n mod 8 in [0, 2, 4]]; // Wesley Ivan Hurt, Jun 10 2016
  • Maple
    A047464:=n->2*(12*n-15-3*cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/9: seq(A047464(n), n=1..100); # Wesley Ivan Hurt, Jun 10 2016
  • Mathematica
    Flatten[#+{0,2,4}&/@(8Range[0,20])] (* or *) LinearRecurrence[{1,0,1,-1}, {0,2,4,8}, 80] (* Harvey P. Dale, May 04 2013 *)

Formula

a(n) = 2*floor((n-1)/3)+2*n-2. - Gary Detlefs, Mar 18 2010
a(n) = 2*A004773(n-1). G.f.: 2*x^2*(1+x+2*x^2)/((1+x+x^2)*(x-1)^2). - R. J. Mathar, Mar 29 2010
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = 2*(12*n-15-3*cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-4, a(3k-1) = 8k-6, a(3k-2) = 8k-8. (End)
Sum_{n>=2} (-1)^n/a(n) = (sqrt(2)-1)*Pi/16 + (2-sqrt(2))*log(2)/16 + sqrt(2)*log(sqrt(2)+2)/8. - Amiram Eldar, Dec 19 2021
a(n) = A047217(n)+n-1. - R. J. Mathar, Aug 25 2025

A047407 Numbers that are congruent to {0, 4, 6} mod 8.

Original entry on oeis.org

0, 4, 6, 8, 12, 14, 16, 20, 22, 24, 28, 30, 32, 36, 38, 40, 44, 46, 48, 52, 54, 56, 60, 62, 64, 68, 70, 72, 76, 78, 80, 84, 86, 88, 92, 94, 96, 100, 102, 104, 108, 110, 112, 116, 118, 120, 124, 126, 128, 132, 134, 136, 140, 142, 144, 148, 150, 152, 156
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n : n in [0..160] | n mod 8 in [0, 4, 6]]; // Vincenzo Librandi, May 02 2016
    
  • Maple
    A047407:=n->2*(12*n-9-2*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047407(n), n=1..100); # Wesley Ivan Hurt, Jun 10 2016
  • Mathematica
    Select[Range[0,200], MemberQ[{0,4,6}, Mod[#,8]]&] (* or *) LinearRecurrence[{1,0,1,-1}, {0,4,6,8}, 70] (* Harvey P. Dale, Apr 20 2016 *)
  • PARI
    a(n)=n\3*8+[-2,0,4][n%3+1] \\ Charles R Greathouse IV, May 02 2016

Formula

From R. J. Mathar, Dec 05 2011: (Start)
a(n) = 2*A004772(n).
G.f.: 2*x^2*(2+x+x^2) / ((1+x+x^2)*(x-1)^2). (End)
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = 2*(12*n-9-2*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-2, a(3k-1) = 8k-4, a(3k-2) = 8k-8. (End)
a(n) = 2*(n - 1 + floor((n + 1)/3)). - Wolfdieter Lang, Sep 11 2021
Sum_{n>=2} (-1)^n/a(n) = (2-sqrt(2))*log(2)/16 + sqrt(2)*log(sqrt(2)+2)/8 - (sqrt(2)-1)*Pi/16. - Amiram Eldar, Dec 19 2021

A357837 a(n) is the sum of the lengths of all the segments used to draw a square of side n representing a fishbone pattern using symmetric L-shaped tiles with side length 2.

Original entry on oeis.org

0, 4, 10, 20, 32, 46, 64, 84, 106, 132, 160, 190, 224, 260, 298, 340, 384, 430, 480, 532, 586, 644, 704, 766, 832, 900, 970, 1044, 1120, 1198, 1280, 1364, 1450, 1540, 1632, 1726, 1824, 1924, 2026, 2132, 2240, 2350, 2464, 2580, 2698, 2820, 2944, 3070, 3200, 3332
Offset: 0

Views

Author

Stefano Spezia, Oct 17 2022

Keywords

Examples

			Illustrations for n = 1..8:
        _           _ _          _ _ _
       |_|         |  _|        |  _|_|
                   |_|_|        |_|  _|
                                |_|_|_|
    a(1) = 4     a(2) = 10     a(3) = 20
     _ _ _ _     _ _ _ _ _    _ _ _ _ _ _
    |  _|_| |   |  _|_|  _|  |  _|_|  _|_|
    |_|  _|_|   |_|  _|_| |  |_|  _|_|  _|
    |_|_|  _|   |_|_|  _|_|  |_|_|  _|_| |
    |_ _|_|_|   |  _|_|  _|  |  _|_|  _|_|
                |_|_ _|_|_|  |_|  _|_|  _|
                             |_|_|_ _|_|_|
    a(4) = 32    a(5) = 46     a(6) = 64
      _ _ _ _ _ _ _      _ _ _ _ _ _ _ _
     |  _|_|  _|_| |    |  _|_|  _|_|  _|
     |_|  _|_|  _|_|    |_|  _|_|  _|_| |
     |_|_|  _|_|  _|    |_|_|  _|_|  _|_|
     |  _|_|  _|_| |    |  _|_|  _|_|  _|
     |_|  _|_|  _|_|    |_|  _|_|  _|_| |
     |_|_|  _|_|  _|    |_|_|  _|_|  _|_|
     |_ _|_|_ _|_|_|    |  _|_|  _|_|  _|
                        |_|_ _|_|_ _|_|_|
        a(7) = 84           a(8) = 106
		

Crossrefs

Cf. A002264, A002522, A005843, A047410 (first differences), A071619, A211547.
Cf. A345118.

Programs

  • Mathematica
    Table[2(Ceiling[2(n+1)^2/3]-1),{n,0,49}]

Formula

a(n) = 2*(ceiling(2*(n+1)^2/3) - 1).
a(n) = 2*(A071619(n+1) - 1).
a(n) = 2*(1 + n^2 - 2*(n - 2)*floor((n - 1)/3) + 3*floor((n - 1)/3)^2) for n > 0.
a(n) = Sum_{k=1..n} A047410(k+1) for n > 0.
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n > 4.
O.g.f.: 2*x*(2 + x + 2*x^2 - x^3)/((1 - x)^3*(1 + x + x^2)).
E.g.f.: 2*exp(-x/2)*(exp(3*x/2)*(6*x*(3 + x) - 1) + cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2))/9.
Showing 1-4 of 4 results.