A047480 Numbers that are congruent to {2, 5, 7} mod 8.
2, 5, 7, 10, 13, 15, 18, 21, 23, 26, 29, 31, 34, 37, 39, 42, 45, 47, 50, 53, 55, 58, 61, 63, 66, 69, 71, 74, 77, 79, 82, 85, 87, 90, 93, 95, 98, 101, 103, 106, 109, 111, 114, 117, 119, 122, 125, 127, 130, 133, 135, 138, 141, 143, 146, 149, 151, 154, 157, 159
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..3000
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 8 in [2, 5, 7]]; // Wesley Ivan Hurt, Jun 10 2016
-
Maple
A047480:=n->(24*n-6-3*cos(2*n*Pi/3)-sqrt(3)*sin(2*n*Pi/3))/9: seq(A047480(n), n=1..100); # Wesley Ivan Hurt, Jun 10 2016
-
Mathematica
Select[Range[0, 150], MemberQ[{2, 5, 7}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 10 2016 *) Flatten[Table[8 n + {2, 5, 7}, {n, 0, 150}]] (* Vincenzo Librandi, Jun 12 2016 *) LinearRecurrence[{1,0,1,-1},{2,5,7,10},100] (* Harvey P. Dale, Jun 18 2018 *)
Formula
G.f.: x*(1+x)*(x^2+x+2) / ((1+x+x^2)*(x-1)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (24*n-6-3*cos(2*n*Pi/3)-sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-1, a(3k-1) = 8k-3, a(3k-2) = 8k-6. (End)
a(n) = A047408(n) + 1. - Lorenzo Sauras Altuzarra, Jan 31 2023