A047550 Numbers that are congruent to {5, 7} mod 8.
5, 7, 13, 15, 21, 23, 29, 31, 37, 39, 45, 47, 53, 55, 61, 63, 69, 71, 77, 79, 85, 87, 93, 95, 101, 103, 109, 111, 117, 119, 125, 127, 133, 135, 141, 143, 149, 151, 157, 159, 165, 167, 173, 175, 181, 183, 189, 191, 197, 199, 205, 207, 213, 215, 221, 223, 229, 231, 237, 239, 245, 247, 253, 255, 261
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Maple
A047550:=n->4*n-(-1)^n; seq(A047550(n), n=1..100); # Wesley Ivan Hurt, Mar 31 2014
-
Mathematica
With[{r8=8*Range[0,40]},Sort[Join[r8+5,r8+7]]] (* or *) LinearRecurrence[ {1,1,-1},{5,7,13},80] (* Harvey P. Dale, Jun 04 2012 *) Table[4 n - (-1)^n, {n, 100}] (* Wesley Ivan Hurt, Mar 31 2014 *)
-
PARI
Vec(x*(5+2*x+x^2)/((1-x)^2*(1+x)) + O(x^100)) \\ Colin Barker, Aug 26 2016
Formula
a(n) = 8*n-a(n-1)-4 (with a(1)=5). - Vincenzo Librandi, Aug 06 2010
a(n) = 4*n-(-1)^n. - Rolf Pleisch, Nov 02 2010
a(1)=5, a(2)=7, a(3)=13; for n>3, a(n) = a(n-1)+a(n-2)-a(n-3). - Harvey P. Dale, Jun 04 2012
G.f.: x*(5+2*x+x^2) / ((1-x)^2*(1+x)). - Colin Barker, Aug 26 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/8 - sqrt(2)*log(sqrt(2)+1)/4. - Amiram Eldar, Dec 19 2021
E.g.f.: 1 + 4*x*exp(x) - exp(-x). - David Lovler, Sep 02 2022
Extensions
More terms from Vincenzo Librandi, Aug 06 2010