A047566 Numbers that are congruent to {4, 5, 6, 7} mod 8.
4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31, 36, 37, 38, 39, 44, 45, 46, 47, 52, 53, 54, 55, 60, 61, 62, 63, 68, 69, 70, 71, 76, 77, 78, 79, 84, 85, 86, 87, 92, 93, 94, 95, 100, 101, 102, 103, 108, 109
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- Maths Magic, Mystery Calculator.
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Crossrefs
Programs
-
Haskell
a047566 n = a047566_list !! (n-1) a047566_list = [n | n <- [1..], mod n 8 > 3] -- Reinhard Zumkeller, Dec 29 2012
-
Maple
A047566:= n-> n+3 + 4*iquo(n-1, 4): seq(A047566(n), n=1..100); # Alois P. Heinz, Aug 22 2011
-
Mathematica
Flatten[# + {4, 5, 6, 7}&/@(8Range[0, 14])] (* Harvey P. Dale, Feb 02 2011 *)
Formula
G.f.: x*(4+x+x^2+x^3+x^4) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, May 19 2016: (Start)
a(n) = a(n-1)+a(n-4)-a(n-5) for n>5.
a(n) = (4*n+1-(-1)^n-(-1)^((n+1)/2)-(-1)^(n/2)-(-1)^(-(n+1)/2)-(-1)^(-n/2))/2. (End)
E.g.f.: 1 + sin(x) - cos(x) + sinh(x) + 2*x*exp(x). - Ilya Gutkovskiy, May 20 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = (2*sqrt(2)-1)*Pi/16 - 3*log(2)/8. - Amiram Eldar, Dec 26 2021
Comments