cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047592 Numbers that are congruent to {1, 2, 3, 4, 5, 6, 7} mod 8.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 81
Offset: 1

Views

Author

Keywords

Comments

Or, numbers that are not multiples of 8. - Benoit Cloitre, Jul 11 2009
More generally the sequence of numbers not divisible by some fixed integer m >= 2 is given by a(n, m) = n - 1 + floor((n+m-2)/(m-1)). - Benoit Cloitre, Jul 11 2009
Complement of A008590. - Reinhard Zumkeller, Nov 30 2009

Crossrefs

Programs

  • Magma
    [ n: n in [0..100] | n mod 8 in {1, 2, 3, 4, 5, 6, 7} ]; // Vincenzo Librandi, Dec 25 2010
  • Maple
    A047592:=n->8*floor(n/7)+[1, 2, 3, 4, 5, 6, 7][(n mod 7)+1]: seq(A047592(n), n=0..100); # Wesley Ivan Hurt, Jul 20 2016
  • Mathematica
    Complement[Range[88], 8Range[11]] (* Harvey P. Dale, Jan 22 2011 *)
    CoefficientList[Series[(1 + x)*(1 + x^2)*(1 + x^4)/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x - 1)^2), {x, 0, 100}], x] (* Vincenzo Librandi, Jan 06 2013 *)
  • PARI
    a(n)=n-1+floor((n+6)/7) \\ Benoit Cloitre, Jul 11 2009
    

Formula

a(n) = n - 1 + floor((n+6)/7). - Benoit Cloitre, Jul 11 2009
A168181(a(n)) = 1. - Reinhard Zumkeller, Nov 30 2009
From R. J. Mathar, Mar 08 2011: (Start)
a(n) = a(n-1) + a(n-7) - a(n-8) for n>8.
G.f.: x*(1+x)*(1+x^2)*(1+x^4) / ( (x^6+x^5+x^4+x^3+x^2+x+1)*(x-1)^2 ). (End)
a(n) = A207481(n) for n <= 70. - Reinhard Zumkeller, Feb 18 2012
From Wesley Ivan Hurt, Jul 20 2016: (Start)
a(n) = (56*n - 28 + (n mod 7) + ((n+1) mod 7) + ((n+2) mod 7) + ((n+3) mod 7) + ((n+4) mod 7) + ((n+5) mod 7) - 6*((n+6) mod 7))/49.
a(7k) = 8k-1, a(7k-1) = 8k-2, a(7k-2) = 8k-3, a(7k-3) = 8k-4, a(7k-4) = 8k-5, a(7k-5) = 8k-6, a(7k-6) = 8k-7. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (4*sqrt(sqrt(2)+2) - 2*sqrt(2) - 1)*Pi/16. - Amiram Eldar, Dec 28 2021