A047592 Numbers that are congruent to {1, 2, 3, 4, 5, 6, 7} mod 8.
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 81
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,1,-1).
Programs
-
Magma
[ n: n in [0..100] | n mod 8 in {1, 2, 3, 4, 5, 6, 7} ]; // Vincenzo Librandi, Dec 25 2010
-
Maple
A047592:=n->8*floor(n/7)+[1, 2, 3, 4, 5, 6, 7][(n mod 7)+1]: seq(A047592(n), n=0..100); # Wesley Ivan Hurt, Jul 20 2016
-
Mathematica
Complement[Range[88], 8Range[11]] (* Harvey P. Dale, Jan 22 2011 *) CoefficientList[Series[(1 + x)*(1 + x^2)*(1 + x^4)/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x - 1)^2), {x, 0, 100}], x] (* Vincenzo Librandi, Jan 06 2013 *)
-
PARI
a(n)=n-1+floor((n+6)/7) \\ Benoit Cloitre, Jul 11 2009
Formula
a(n) = n - 1 + floor((n+6)/7). - Benoit Cloitre, Jul 11 2009
A168181(a(n)) = 1. - Reinhard Zumkeller, Nov 30 2009
From R. J. Mathar, Mar 08 2011: (Start)
a(n) = a(n-1) + a(n-7) - a(n-8) for n>8.
G.f.: x*(1+x)*(1+x^2)*(1+x^4) / ( (x^6+x^5+x^4+x^3+x^2+x+1)*(x-1)^2 ). (End)
a(n) = A207481(n) for n <= 70. - Reinhard Zumkeller, Feb 18 2012
From Wesley Ivan Hurt, Jul 20 2016: (Start)
a(n) = (56*n - 28 + (n mod 7) + ((n+1) mod 7) + ((n+2) mod 7) + ((n+3) mod 7) + ((n+4) mod 7) + ((n+5) mod 7) - 6*((n+6) mod 7))/49.
a(7k) = 8k-1, a(7k-1) = 8k-2, a(7k-2) = 8k-3, a(7k-3) = 8k-4, a(7k-4) = 8k-5, a(7k-5) = 8k-6, a(7k-6) = 8k-7. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (4*sqrt(sqrt(2)+2) - 2*sqrt(2) - 1)*Pi/16. - Amiram Eldar, Dec 28 2021
Comments