cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047596 Numbers that are congruent to {2, 3, 4, 5} mod 8.

Original entry on oeis.org

2, 3, 4, 5, 10, 11, 12, 13, 18, 19, 20, 21, 26, 27, 28, 29, 34, 35, 36, 37, 42, 43, 44, 45, 50, 51, 52, 53, 58, 59, 60, 61, 66, 67, 68, 69, 74, 75, 76, 77, 82, 83, 84, 85, 90, 91, 92, 93, 98, 99, 100, 101, 106, 107, 108, 109, 114, 115, 116, 117, 122, 123
Offset: 1

Views

Author

Keywords

Comments

For n > 2, a(n) is the decimal value that results from the conversion of n-1 to binary whose last two bits are altered by either of the following rules: 00->010, 01->011, 10->100, 11->101. For example a(10) = 19 because 10 - 1 = 9 = '10'01'->'10'011' = 19. - Franck Maminirina Ramaharo, Jul 25 2018

Crossrefs

Programs

  • GAP
    Filtered([1..130],n->n mod 8=2 or n mod 8=3 or n mod 8=4 or n mod 8=5); # Muniru A Asiru, Jul 27 2018
  • Magma
    [n: n in [1..120] | n mod 8 in [2..5]]; // Bruno Berselli, Jul 17 2012
    
  • Maple
    A047596:=n->2*n-1-I^(n*(n+1))-(1+I^(2*n))/2: seq(A047596(n), n=1..100); # Wesley Ivan Hurt, Jun 01 2016
  • Mathematica
    Select[Range[120], MemberQ[{2, 3, 4, 5}, Mod[#, 8]] &] (* or *) LinearRecurrence[{1, 0, 0, 1, -1}, {2, 3, 4, 5, 10}, 60] (* Bruno Berselli, Jul 17 2012 *)
  • Maxima
    makelist(2*n-1-%i^(n*(n+1))-(1+(-1)^n)/2,n,1,60); /* Bruno Berselli, Jul 17 2012 */
    
  • PARI
    Vec((2+x+x^2+x^3+3*x^4)/((1+x)*(1-x)^2*(1+x^2))+O(x^60)) \\ Bruno Berselli, Jul 17 2012
    

Formula

G.f.: x*(2+x+x^2+x^3+3*x^4)/((1+x)*(1-x)^2*(1+x^2)). [Bruno Berselli, Jul 17 2012]
a(n) = 2*n-1-i^(n*(n+1))-(1+(-1)^n)/2, where i=sqrt(-1). [Bruno Berselli, Jul 17 2012]
a(n) = 2n - A010873(n-1). - Wesley Ivan Hurt, Jul 07 2013
From Wesley Ivan Hurt, Jun 01 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(2k) = A047621(k), a(2k-1) = A047463(k). (End)
E.g.f.: 3 + sin(x) - cos(x) + (2*x - 1)*sinh(x) + 2*(x - 1)*cosh(x). - Ilya Gutkovskiy, Jun 02 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/16 - (sqrt(2)+3)*log(2)/8 + sqrt(2)*log(sqrt(2)+2)/4. - Amiram Eldar, Dec 25 2021