A047596 Numbers that are congruent to {2, 3, 4, 5} mod 8.
2, 3, 4, 5, 10, 11, 12, 13, 18, 19, 20, 21, 26, 27, 28, 29, 34, 35, 36, 37, 42, 43, 44, 45, 50, 51, 52, 53, 58, 59, 60, 61, 66, 67, 68, 69, 74, 75, 76, 77, 82, 83, 84, 85, 90, 91, 92, 93, 98, 99, 100, 101, 106, 107, 108, 109, 114, 115, 116, 117, 122, 123
Offset: 1
Links
- Bruno Berselli, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
GAP
Filtered([1..130],n->n mod 8=2 or n mod 8=3 or n mod 8=4 or n mod 8=5); # Muniru A Asiru, Jul 27 2018
-
Magma
[n: n in [1..120] | n mod 8 in [2..5]]; // Bruno Berselli, Jul 17 2012
-
Maple
A047596:=n->2*n-1-I^(n*(n+1))-(1+I^(2*n))/2: seq(A047596(n), n=1..100); # Wesley Ivan Hurt, Jun 01 2016
-
Mathematica
Select[Range[120], MemberQ[{2, 3, 4, 5}, Mod[#, 8]] &] (* or *) LinearRecurrence[{1, 0, 0, 1, -1}, {2, 3, 4, 5, 10}, 60] (* Bruno Berselli, Jul 17 2012 *)
-
Maxima
makelist(2*n-1-%i^(n*(n+1))-(1+(-1)^n)/2,n,1,60); /* Bruno Berselli, Jul 17 2012 */
-
PARI
Vec((2+x+x^2+x^3+3*x^4)/((1+x)*(1-x)^2*(1+x^2))+O(x^60)) \\ Bruno Berselli, Jul 17 2012
Formula
G.f.: x*(2+x+x^2+x^3+3*x^4)/((1+x)*(1-x)^2*(1+x^2)). [Bruno Berselli, Jul 17 2012]
a(n) = 2*n-1-i^(n*(n+1))-(1+(-1)^n)/2, where i=sqrt(-1). [Bruno Berselli, Jul 17 2012]
a(n) = 2n - A010873(n-1). - Wesley Ivan Hurt, Jul 07 2013
From Wesley Ivan Hurt, Jun 01 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
E.g.f.: 3 + sin(x) - cos(x) + (2*x - 1)*sinh(x) + 2*(x - 1)*cosh(x). - Ilya Gutkovskiy, Jun 02 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/16 - (sqrt(2)+3)*log(2)/8 + sqrt(2)*log(sqrt(2)+2)/4. - Amiram Eldar, Dec 25 2021
Comments