A047602 Numbers that are congruent to {0, 1, 2, 3, 4, 5} mod 8.
0, 1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 60, 61, 64, 65, 66, 67, 68, 69, 72, 73, 74, 75, 76, 77, 80, 81, 82, 83, 84, 85, 88
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,1,-1).
Programs
-
Magma
[n: n in [0..150] | n mod 8 in [0..5]]; // Vincenzo Librandi, May 04 2016
-
Maple
A047602:=n->floor((8/7)*floor(7*(n-1)/6)): seq(A047602(n), n=1..100); # Wesley Ivan Hurt, May 29 2016
-
Mathematica
Table[Floor[(8/7) Floor[7 (n - 1) / 6]], {n, 80}] (* Vincenzo Librandi, May 04 2016 *) LinearRecurrence[{1, 0, 0, 0, 0, 1, -1}, {0, 1, 2, 3, 4, 5, 8}, 50] (* G. C. Greubel, May 29 2016 *)
Formula
a(n) = floor((8/7)*floor(7*(n-1)/6)). - Bruno Berselli, May 03 2016
From Chai Wah Wu, May 29 2016: (Start)
a(n) = a(n-1) + a(n-6) - a(n-7) for n>7.
G.f.: x^2*(3*x^5 + x^4 + x^3 + x^2 + x + 1)/(x^7 - x^6 - x + 1). (End)
From Wesley Ivan Hurt, Jun 15 2016: (Start)
a(n) = (24*n-39-3*cos(n*Pi)-4*sqrt(3)*cos((4*n+1)*Pi/6)-12*sin((1-2*n)*Pi/6))/18.
a(6k) = 8k-3, a(6k-1) = 8k-4, a(6k-2) = 8k-5, a(6k-3) = 8k-6, a(6k-4) = 8k-7, a(6k-5) = 8k-8. (End)
Sum_{n>=2} (-1)^n/a(n) = sqrt(2)*Pi/16 + 7*log(2)/8 + sqrt(2)*log(3-2*sqrt(2))/16. - Amiram Eldar, Dec 26 2021