cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A047420 Numbers that are congruent to {0, 1, 2, 3, 4, 6} mod 8.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 14, 16, 17, 18, 19, 20, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 40, 41, 42, 43, 44, 46, 48, 49, 50, 51, 52, 54, 56, 57, 58, 59, 60, 62, 64, 65, 66, 67, 68, 70, 72, 73, 74, 75, 76, 78, 80, 81, 82, 83, 84, 86, 88
Offset: 1

Views

Author

Keywords

Comments

The product of any two terms belongs to the sequence and therefore also a(n)^2, a(n)^3, a(n)^4, etc. - Bruno Berselli, Nov 28 2012

Crossrefs

Programs

  • Magma
    [n : n in [0..100] | n mod 8 in [0..4] cat [6]]; // Wesley Ivan Hurt, Jun 15 2016
  • Maple
    A047420:=n->(12*n-18+sqrt(3)*(3*sin(n*Pi/3)+sin(2*n*Pi/3)))/9: seq(A047420(n), n=1..100); # Wesley Ivan Hurt, Jun 15 2016
  • Mathematica
    Select[Range[0, 100], MemberQ[{0, 1, 2, 3, 4, 6}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 15 2016 *)
    LinearRecurrence[{2,-2,2,-2,2,-1},{0,1,2,3,4,6},70] (* Harvey P. Dale, Aug 11 2021 *)

Formula

a(n+1) = 6*floor(n/3)+(n mod 3). - Gary Detlefs, Mar 09 2010
G.f.: x^2*(1+x^2+2*x^4) / ( (1+x+x^2)*(x^2-x+1)*(x-1)^2 ). - R. J. Mathar, Dec 05 2011
From Wesley Ivan Hurt, Jun 15 2016: (Start)
a(n) = 2*a(n-1)-2*a(n-2)+2*a(n-3)-2*a(n-4)+2*a(n-5)-a(n-6) for n>6.
a(n) = (12*n-18+sqrt(3)*(3*sin(n*Pi/3)+sin(2*n*Pi/3)))/9.
a(6k) = 8k-2, a(6k-1) = 8k-4, a(6k-2) = 8k-5, a(6k-3) = 8k-6, a(6k-4) = 8k-7, a(6k-5) = 8k-8. (End)
Sum_{n>=2} (-1)^n/a(n) = (sqrt(2)-1)*Pi/8 + 3*log(2)/4. - Amiram Eldar, Dec 26 2021

A047549 Numbers that are congruent to {0, 1, 2, 3, 4, 7} mod 8.

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 15, 16, 17, 18, 19, 20, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 36, 39, 40, 41, 42, 43, 44, 47, 48, 49, 50, 51, 52, 55, 56, 57, 58, 59, 60, 63, 64, 65, 66, 67, 68, 71, 72, 73, 74, 75, 76, 79, 80, 81, 82, 83, 84, 87, 88
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n : n in [0..100] | n mod 8 in [0..4] cat [7]]; // Wesley Ivan Hurt, May 29 2016
  • Maple
    A047549:=n->(24*n-33+3*cos(n*Pi)+4*sqrt(3)*cos((1-4*n)*Pi/6)+12*sin((1+
    2*n)*Pi/6))/18: seq(A047549(n), n=1..100); # Wesley Ivan Hurt, Jun 16 2016
  • Mathematica
    LinearRecurrence[{1, 0, 0, 0, 0, 1, -1}, {0, 1, 2, 3, 4, 7, 8}, 50] (* G. C. Greubel, May 29 2016 *)

Formula

From Chai Wah Wu, May 29 2016: (Start)
a(n) = a(n-1) + a(n-6) - a(n-7) for n>7.
G.f.: x^2*(x^5 + 3*x^4 + x^3 + x^2 + x + 1)/(x^7 - x^6 - x + 1). (End)
From Wesley Ivan Hurt, Jun 16 2016: (Start)
a(n) = (24*n-33+3*cos(n*Pi)+4*sqrt(3)*cos((1-4*n)*Pi/6)+12*sin((1+
2*n)*Pi/6))/18.
a(6k) = 8k-1, a(6k-1) = 8k-4, a(6k-2) = 8k-5, a(6k-3) = 8k-6, a(6k-4) = 8k-7, a(6k-5) = 8k-8. (End)
Sum_{n>=2} (-1)^n/a(n) = (14-sqrt(2))*log(2)/16 + sqrt(2)*log(sqrt(2)+2)/8 - (2-sqrt(2))*Pi/16. - Amiram Eldar, Dec 26 2021

A047450 Numbers that are congruent to {0, 1, 2, 3, 5, 6} mod 8.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 8, 9, 10, 11, 13, 14, 16, 17, 18, 19, 21, 22, 24, 25, 26, 27, 29, 30, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 82, 83, 85, 86, 88
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n : n in [0..100] | n mod 8 in [0, 1, 2, 3, 5, 6]]; // Wesley Ivan Hurt, Jun 16 2016
  • Maple
    A047450:=n->(24*n-33-3*cos(n*Pi)-2*sqrt(3)*cos((1-4*n)*Pi/6)+6*sin((1+2*n) *Pi/6))/18: seq(A047450(n), n=1..100); # Wesley Ivan Hurt, Jun 16 2016
  • Mathematica
    Select[Range[0, 100], MemberQ[{0, 1, 2, 3, 5, 6}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 16 2016 *)

Formula

G.f.: x^2*(1+x+x^2+2*x^3+x^4+2*x^5) / ((1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^2). - R. J. Mathar, Dec 07 2011
From Wesley Ivan Hurt, Jun 16 2016: (Start)
a(n) = a(n-1) + a(n-6) - a(n-7) for n>7.
a(n) = (24*n-33-3*cos(n*Pi)-2*sqrt(3)*cos((1-4*n)*Pi/6)+6*sin((1+2*n) *Pi/6))/18.
a(6k) = 8k-2, a(6k-1) = 8k-3, a(6k-2) = 8k-5, a(6k-3) = 8k-6, a(6k-4) = 8k-7, a(6k-5) = 8k-8. (End)
Sum_{n>=2} (-1)^n/a(n) = 3*(sqrt(2)-1)*Pi/16 + (8-sqrt(2))*log(2)/16 + sqrt(2)*log(sqrt(2)+2)/8. - Amiram Eldar, Dec 26 2021

A272574 a(n) = f(9, f(8, n)), where f(k,m) = floor(m*k/(k-1)).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 36, 37, 38, 39, 40, 41, 42, 45, 46, 47, 48, 49, 50, 51, 54, 55, 56, 57, 58, 59, 60, 63, 64, 65, 66, 67, 68, 69, 72, 73, 74, 75, 76, 77, 78, 81, 82, 83, 84, 85, 86, 87, 90
Offset: 0

Views

Author

Bruno Berselli, May 03 2016

Keywords

Comments

Also, numbers that are congruent to {0..6} mod 9.
The initial terms coincide with those of A037475 and A039111. First disagreement is after 60 (index 48): a(49) = 63, A037475(49) = 81 and A039111(50) = 71.

Crossrefs

Cf. A248375: f(9,n).
Cf. similar sequences with the formula f(k, f(k-1, n)): A008585 (k=3), A042948 (k=4), A047217 (k=5), A047246 (k=6), A047337 (k=7), A047602 (k=8), this sequence (k=9), A272576 (k=10).

Programs

  • Magma
    k:=9; f:=func; [f(k,f(k-1,n)): n in [0..70]];
    
  • Maple
    f := (k, m) -> floor(m*k/(k-1)):
    a := n -> f(9, f(8, n)):
    seq(a(n), n = 0..70); # Peter Luschny, May 03 2016
  • Mathematica
    f[k_, m_] := Floor[m*k/(k-1)];
    a[n_] := f[9, f[8, n]];
    Table[a[n], {n, 0, 70}] (* Jean-François Alcover, May 09 2016 *)
    CoefficientList[Series[x (1 + x + x^2 + x^3 + x^4 + x^5 + 3 x^6)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)), {x, 0, 70}], x] (* or *)
    Table[(63 n - 12 - 12 Mod[n, 7] + 2 Mod[-n - 1, 7])/49, {n, 0, 70}] (* Michael De Vlieger, Dec 25 2016 *)
    LinearRecurrence[{1,0,0,0,0,0,1,-1},{0,1,2,3,4,5,6,9},90] (* Harvey P. Dale, May 08 2018 *)
  • Sage
    f = lambda k, m: floor(m*k/(k-1))
    a = lambda n: f(9, f(8, n))
    [a(n) for n in range(71)] # Peter Luschny, May 03 2016

Formula

G.f.: x*(1 + x + x^2 + x^3 + x^4 + x^5 + 3*x^6)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)).
a(n) = a(n-1) + a(n-7) - a(n-8).
a(n) = (63*n - 12 - 12*(n mod 7) + 2*((-n-1) mod 7))/49. - Wesley Ivan Hurt, Dec 25 2016
Showing 1-4 of 4 results.