A047420 Numbers that are congruent to {0, 1, 2, 3, 4, 6} mod 8.
0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 14, 16, 17, 18, 19, 20, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 40, 41, 42, 43, 44, 46, 48, 49, 50, 51, 52, 54, 56, 57, 58, 59, 60, 62, 64, 65, 66, 67, 68, 70, 72, 73, 74, 75, 76, 78, 80, 81, 82, 83, 84, 86, 88
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-2,2,-1).
Programs
-
Magma
[n : n in [0..100] | n mod 8 in [0..4] cat [6]]; // Wesley Ivan Hurt, Jun 15 2016
-
Maple
A047420:=n->(12*n-18+sqrt(3)*(3*sin(n*Pi/3)+sin(2*n*Pi/3)))/9: seq(A047420(n), n=1..100); # Wesley Ivan Hurt, Jun 15 2016
-
Mathematica
Select[Range[0, 100], MemberQ[{0, 1, 2, 3, 4, 6}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 15 2016 *) LinearRecurrence[{2,-2,2,-2,2,-1},{0,1,2,3,4,6},70] (* Harvey P. Dale, Aug 11 2021 *)
Formula
a(n+1) = 6*floor(n/3)+(n mod 3). - Gary Detlefs, Mar 09 2010
G.f.: x^2*(1+x^2+2*x^4) / ( (1+x+x^2)*(x^2-x+1)*(x-1)^2 ). - R. J. Mathar, Dec 05 2011
From Wesley Ivan Hurt, Jun 15 2016: (Start)
a(n) = 2*a(n-1)-2*a(n-2)+2*a(n-3)-2*a(n-4)+2*a(n-5)-a(n-6) for n>6.
a(n) = (12*n-18+sqrt(3)*(3*sin(n*Pi/3)+sin(2*n*Pi/3)))/9.
a(6k) = 8k-2, a(6k-1) = 8k-4, a(6k-2) = 8k-5, a(6k-3) = 8k-6, a(6k-4) = 8k-7, a(6k-5) = 8k-8. (End)
Sum_{n>=2} (-1)^n/a(n) = (sqrt(2)-1)*Pi/8 + 3*log(2)/4. - Amiram Eldar, Dec 26 2021
Comments