A047615 Numbers that are congruent to {0, 5} mod 8.
0, 5, 8, 13, 16, 21, 24, 29, 32, 37, 40, 45, 48, 53, 56, 61, 64, 69, 72, 77, 80, 85, 88, 93, 96, 101, 104, 109, 112, 117, 120, 125, 128, 133, 136, 141, 144, 149, 152, 157, 160, 165, 168, 173, 176, 181, 184, 189, 192, 197, 200, 205, 208, 213, 216, 221, 224, 229, 232
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Crossrefs
Programs
-
GAP
Filtered([0..250], n->n mod 8=0 or n mod 8=5); # Muniru A Asiru, Jul 23 2018
-
Magma
[(8*n - 7 + (-1)^n)/2 : n in [1..50]]; // Wesley Ivan Hurt, Mar 26 2015
-
Maple
a:=n->add(4-(-1)^j, j=1..n): seq(a(n), n=0..59); # Zerinvary Lajos, Dec 13 2008
-
Mathematica
Table[(8 n - 7 + (-1)^n)/2, {n, 1, 40}] (* Wesley Ivan Hurt, Mar 26 2015 *) Rest@ CoefficientList[Series[x^2*(5 + 3 x)/((1 - x)^2*(1 + x)), {x, 0, 59}], x] (* Michael De Vlieger, Aug 25 2016 *) Rest@(Range[0, 60]! CoefficientList[ Series[(6 + Exp[-x] + (8 x - 7)*Exp[x])/2, {x, 0, 60}], x]) (* or *) LinearRecurrence[{1, 1, -1}, {0, 5, 8}, 60] (* Robert G. Wilson v, Jul 23 2018 *)
-
PARI
forstep(n=0,200,[5,3],print1(n", ")) \\ Charles R Greathouse IV, Oct 17 2011
-
PARI
concat(0, Vec(x^2*(5+3*x)/((1-x)^2*(1+x)) + O(x^100))) \\ Colin Barker, Aug 25 2016
-
Python
def A047615(n): return (n<<2)-3-(n&1) # Chai Wah Wu, Mar 30 2024
Formula
a(n) = 8*n-a(n-1)-11 (with a(1)=0). - Vincenzo Librandi, Aug 06 2010
a(n+1) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=5 and b(k)=2^(k+2) for k>0. - Philippe Deléham, Oct 17 2011
From Wesley Ivan Hurt, Mar 26 2015: (Start)
a(n) = a(n-1)+a(n-2)-a(n-3).
a(n) = (8n - 7 + (-1)^n)/2. (End)
G.f.: x^2*(5+3*x) / ((1-x)^2*(1+x)). - Colin Barker, Aug 25 2016
From Franck Maminirina Ramaharo, Jul 23 2018: (Start)
a(n) = A047470(n) - (-1)^(n - 1) + 1.
E.g.f.: (6 + exp(-x) + (8*x - 7)*exp(x))/2. (End)
Sum_{n>=2} (-1)^n/a(n) = log(2)/2 - (sqrt(2)-1)*Pi/16 - sqrt(2)*log(sqrt(2)+1)/8. - Amiram Eldar, Dec 18 2021
Extensions
More terms from Vincenzo Librandi, Aug 06 2010