cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047615 Numbers that are congruent to {0, 5} mod 8.

Original entry on oeis.org

0, 5, 8, 13, 16, 21, 24, 29, 32, 37, 40, 45, 48, 53, 56, 61, 64, 69, 72, 77, 80, 85, 88, 93, 96, 101, 104, 109, 112, 117, 120, 125, 128, 133, 136, 141, 144, 149, 152, 157, 160, 165, 168, 173, 176, 181, 184, 189, 192, 197, 200, 205, 208, 213, 216, 221, 224, 229, 232
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    Filtered([0..250], n->n mod 8=0 or n mod 8=5); # Muniru A Asiru, Jul 23 2018
    
  • Magma
    [(8*n - 7 + (-1)^n)/2 : n in [1..50]]; // Wesley Ivan Hurt, Mar 26 2015
    
  • Maple
    a:=n->add(4-(-1)^j, j=1..n): seq(a(n), n=0..59); # Zerinvary Lajos, Dec 13 2008
  • Mathematica
    Table[(8 n - 7 + (-1)^n)/2, {n, 1, 40}] (* Wesley Ivan Hurt, Mar 26 2015 *)
    Rest@ CoefficientList[Series[x^2*(5 + 3 x)/((1 - x)^2*(1 + x)), {x, 0, 59}], x] (* Michael De Vlieger, Aug 25 2016 *)
    Rest@(Range[0, 60]! CoefficientList[ Series[(6 + Exp[-x] + (8 x - 7)*Exp[x])/2, {x, 0, 60}], x]) (* or *)
    LinearRecurrence[{1, 1, -1}, {0, 5, 8}, 60] (* Robert G. Wilson v, Jul 23 2018 *)
  • PARI
    forstep(n=0,200,[5,3],print1(n", ")) \\ Charles R Greathouse IV, Oct 17 2011
    
  • PARI
    concat(0, Vec(x^2*(5+3*x)/((1-x)^2*(1+x)) + O(x^100))) \\ Colin Barker, Aug 25 2016
    
  • Python
    def A047615(n): return (n<<2)-3-(n&1) # Chai Wah Wu, Mar 30 2024

Formula

a(n) = 8*n-a(n-1)-11 (with a(1)=0). - Vincenzo Librandi, Aug 06 2010
a(n+1) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=5 and b(k)=2^(k+2) for k>0. - Philippe Deléham, Oct 17 2011
From Wesley Ivan Hurt, Mar 26 2015: (Start)
a(n) = a(n-1)+a(n-2)-a(n-3).
a(n) = (8n - 7 + (-1)^n)/2. (End)
G.f.: x^2*(5+3*x) / ((1-x)^2*(1+x)). - Colin Barker, Aug 25 2016
From Franck Maminirina Ramaharo, Jul 23 2018: (Start)
a(n) = A047470(n) - (-1)^(n - 1) + 1.
E.g.f.: (6 + exp(-x) + (8*x - 7)*exp(x))/2. (End)
Sum_{n>=2} (-1)^n/a(n) = log(2)/2 - (sqrt(2)-1)*Pi/16 - sqrt(2)*log(sqrt(2)+1)/8. - Amiram Eldar, Dec 18 2021

Extensions

More terms from Vincenzo Librandi, Aug 06 2010