A047650 Primes for which golden mean tau is a quadratic residue.
29, 89, 101, 181, 229, 349, 401, 461, 509, 521, 541, 709, 761, 769, 809, 941, 1009, 1021, 1049, 1061, 1109, 1229, 1249, 1289, 1361, 1409, 1549, 1601, 1621, 1669, 1709, 1721, 1741, 1789, 1861, 2029, 2069, 2081, 2089, 2389, 2441, 2621, 2729, 2801, 2861
Offset: 0
Links
- A.H.M. Smeets, Table of n, a(n) for n = 0..20000 (terms 0..1700 from Vincenzo Librandi)
- Bob Bastasz, Lyndon words of a second-order recurrence, Fibonacci Quarterly (2020) Vol. 58, No. 5, 25-29.
- E. Lehmer, On the quadratic character of the Fibonacci root, Fib. Quart., 4 (1966), 135-138.
- E. Lehmer, Correction, Fib. Quart., 4 (1966), 135-138.
- E. Lehmer, On the quadratic character of the Fibonacci root (annotated scanned copy)
Programs
-
Magma
k:=20; [p: p in PrimesUpTo(3000) | NormEquation(k, p) eq true]; // Vincenzo Librandi, Sep 05 2016
-
Mathematica
nn=20; pMax=3000; Union[Reap[Do[p=x^2 + nn*y^2; If[p<=pMax&&PrimeQ[p], Sow[p]], {x, Sqrt[pMax]}, {y, Sqrt[pMax/nn]}]][[2, 1]]] (* Vincenzo Librandi, Sep 05 2016 *)
Formula
Extensions
More terms from James Sellers, Jan 25 2000
Comments