cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047650 Primes for which golden mean tau is a quadratic residue.

Original entry on oeis.org

29, 89, 101, 181, 229, 349, 401, 461, 509, 521, 541, 709, 761, 769, 809, 941, 1009, 1021, 1049, 1061, 1109, 1229, 1249, 1289, 1361, 1409, 1549, 1601, 1621, 1669, 1709, 1721, 1741, 1789, 1861, 2029, 2069, 2081, 2089, 2389, 2441, 2621, 2729, 2801, 2861
Offset: 0

Views

Author

Keywords

Comments

Primes of the form x^2 + 20*y^2. - T. D. Noe, May 08 2005
Also primes p that divide the sum of cubes of the first (p-1)/2 Fibonacci numbers A005968((p-1)/2). - Alexander Adamchuk, Aug 07 2006
From A.H.M. Smeets, Nov 16 2023: (Start)
Mean gap size between two consecutive terms at p: ~ 8*log(p).
In x^2 + 20y^2: x == 1 (mod 2) and x !== 5 (mod 10). Otherwise not prime. (End)

Crossrefs

Programs

  • Magma
    k:=20; [p: p in PrimesUpTo(3000) | NormEquation(k, p) eq true]; // Vincenzo Librandi, Sep 05 2016
  • Mathematica
    nn=20; pMax=3000; Union[Reap[Do[p=x^2 + nn*y^2; If[p<=pMax&&PrimeQ[p], Sow[p]], {x, Sqrt[pMax]}, {y, Sqrt[pMax/nn]}]][[2, 1]]] (* Vincenzo Librandi, Sep 05 2016 *)

Formula

From A.H.M. Smeets, Nov 16 2023: (Start)
Equals {prime(n): A296240(n) in {2^k: k > 0}} = {A308787} union {A308789} union {A308793} union ... .
a(n) ~ A000040(8*n). (End)

Extensions

More terms from James Sellers, Jan 25 2000