cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A047651 Minimal positive value of tau modulo primes in A047650.

Original entry on oeis.org

6, 10, 23, 14, 82, 144, 112, 22, 122, 100, 173, 171, 92, 339, 343, 228, 383, 458, 326, 460, 407, 485, 405, 157, 83, 125, 530, 606, 176, 136, 601, 42, 321, 236, 364, 842, 46, 914, 612, 676, 380, 535, 335, 393, 54, 123, 1209, 1298, 812, 1196, 1371, 252, 314, 851, 524, 1157
Offset: 1

Views

Author

Keywords

Comments

Since sqrt(5) mod p is determined up to a sign, there are two values that tau mod p can take.
Minimal positive solution to the equation x^2 - x - 1 = 0 modulo p for primes p in A047650.

Crossrefs

Cf. A047650.

Extensions

Edited and extended by Max Alekseyev, Feb 06 2010

A106856 Primes of the form x^2 + xy + 2y^2, with x and y nonnegative.

Original entry on oeis.org

2, 11, 23, 37, 43, 53, 71, 79, 107, 109, 127, 137, 149, 151, 163, 193, 197, 211, 233, 239, 263, 281, 317, 331, 337, 373, 389, 401, 421, 431, 443, 463, 487, 491, 499, 541, 547, 557, 569, 599, 613, 617, 641, 653, 659, 673, 683, 739, 743, 751, 757, 809, 821
Offset: 1

Views

Author

T. D. Noe, May 09 2005, Apr 28 2008

Keywords

Comments

Discriminant=-7. Binary quadratic forms ax^2 + bxy + cy^2 have discriminant d = b^2 - 4ac.
Consider sequences of primes produced by forms with -100
The Mathematica function QuadPrimes2 is useful for finding the primes less than "lim" represented by the positive definite quadratic form ax^2 + bxy + cy^2 for any a, b and c satisfying a>0, c>0, and discriminant d<0. It does this by examining all x>=0 and y>=0 in the ellipse ax^2 + bxy + cy^2 <= lim. To find the primes generated by positive and negative x and y, compute the union of QuadPrimes2[a,b,c,lim] and QuadPrimes2[a,-b,c,lim]. - T. D. Noe, Sep 01 2009
For other programs see the "Binary Quadratic Forms and OEIS" link.

References

  • David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.
  • L. E. Dickson, History of the Theory of Numbers, Vol. 3, Chelsea, 1923.

Crossrefs

Discriminants in the range -3 to -100: A007645 (d=-3), A002313 (d=-4), A045373, A106856 (d=-7), A033203 (d=-8), A056874, A106857 (d=-11), A002476 (d=-12), A033212, A106858-A106861 (d=-15), A002144, A002313 (d=-16), A106862-A106863 (d=-19), A033205, A106864-A106865 (d=-20), A106866-A106869 (d=-23), A033199, A084865 (d=-24), A002476, A106870 (d=-27), A033207 (d=-28), A033221, A106871-A106874 (d=-31), A007519, A007520, A106875-A106876 (d=-32), A106877-A106881 (d=-35), A040117, A068228, A106882 (d=-36), A033227, A106883-A106888 (d=-39), A033201, A106889 (d=-40), A106890-A106891 (d=-43), A033209, A106282, A106892-A106893 (d=-44), A033232, A106894-A106900 (d=-47), A068229 (d=-48), A106901-A106904 (d=-51), A033210, A106905-A106906 (d=-52), A033235, A106907-A106913 (d=-55), A033211, A106914-A106917 (d=-56), A106918-A106922 (d=-59), A033212, A106859 (d=-60), A106923-A106930 (d=-63), A007521, A106931 (d=-64), A106932-A106933 (d=-67), A033213, A106934-A106938 (d=-68), A033246, A106939-A106948 (d=-71), A106949-A106950 (d=-72), A033212, A106951-A106952 (d=-75), A033214, A106953-A106955 (d=-76), A033251, A106956-A106962 (d=-79), A047650, A106963-A106965 (d=-80), A106966-A106970 (d=-83), A033215, A102271, A102273, A106971-A106974 (d=-84), A033256, A106975-A106983 (d=-87), A033216, A106984 (d=-88), A106985-A106989 (d=-91), A033217 (d=-92), A033206, A106990-A107001 (d=-95), A107002-A107008 (d=-96), A107009-A107013 (d=-99).
Other collections of quadratic forms: A139643, A139827.
For a more comprehensive list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
Cf. also A242660.

Programs

  • Mathematica
    QuadPrimes2[a_, b_, c_, lmt_] := Module[{p, d, lst = {}, xMax, yMax}, d = b^2 - 4a*c; If[a > 0 && c > 0 && d < 0, xMax = Sqrt[lmt/a]*(1+Abs[b]/Floor[Sqrt[-d]])]; Do[ If[ 4c*lmt + d*x^2 >= 0, yMax = ((-b)*x + Sqrt[4c*lmt + d*x^2])/(2c), yMax = 0 ]; Do[p = a*x^2 + b*x*y + c*y^2; If[ PrimeQ[ p]  && p <= lmt && !MemberQ[ lst, p], AppendTo[ lst, p]], {y, 0, yMax}], {x, 0, xMax}]; Sort[ lst]];
    QuadPrimes2[1, 1, 2, 1000]
    (This is a corrected version of the old, incorrect, program QuadPrimes. - N. J. A. Sloane, Jun 15 2014)
    max = 1000; Table[yy = {y, 1, Floor[Sqrt[8 max - 7 x^2]/4 - x/4]}; Table[ x^2 + x y + 2 y^2, yy // Evaluate], {x, 0, Floor[Sqrt[max]]}] // Flatten // Union // Select[#, PrimeQ]& (* Jean-François Alcover, Oct 04 2018 *)
  • PARI
    list(lim)=my(q=Qfb(1,1,2), v=List([2])); forprime(p=2, lim, if(vecmin(qfbsolve(q, p))>0, listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Aug 05 2016

Extensions

Removed old Mathematica programs - T. D. Noe, Sep 09 2009
Edited (pointed out error in QuadPrimes, added new version of program, checked and extended b-file). - N. J. A. Sloane, Jun 06 2014

A001583 Artiads: the primes p == 1 (mod 5) for which Fibonacci((p-1)/5) is divisible by p.

Original entry on oeis.org

211, 281, 421, 461, 521, 691, 881, 991, 1031, 1151, 1511, 1601, 1871, 1951, 2221, 2591, 3001, 3251, 3571, 3851, 4021, 4391, 4441, 4481, 4621, 4651, 4691, 4751, 4871, 5081, 5281, 5381, 5531, 5591, 5641, 5801, 5881, 6011, 6101, 6211, 6271, 6491, 6841
Offset: 1

Keywords

Comments

From A.H.M. Smeets, Nov 15 2023: (Start)
Mean gap size between two consecutive terms at p: ~ 20*log(p) (see E. Lehmer).
In E. Lehmer, Artiads characterized, she counted in the table on p. 122 the primes p for which p == 1 (mod 5) instead of all primes. As a result, in the corollary on p. 121, the 20% becomes 5% (or 1/20 instead of 1/5). (End)

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A047650, A000045, A024894, subsequence of A030430.
See also A270798 (a subsequence), A270800.

Programs

  • Haskell
    a001583 n = a001583_list !! (n-1)
    a001583_list = filter
       (\p -> mod (a000045 $ div (p - 1) 5) p == 0) a030430_list
    -- Reinhard Zumkeller, Aug 15 2013
    
  • Mathematica
    Select[ Prime[ Range[1000]], Mod[#, 5] == 1 && Divisible[ Fibonacci[(# - 1)/5], #] &] (* Jean-François Alcover, Jun 22 2012 *)
  • PARI
    fibmod(n, m)=((Mod([1, 1; 1, 0], m))^n)[1, 2]
    list(lim)=my(v=List()); forprime(p=11,lim, if(p%5==1 && fibmod(p\5,p)==0, listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Feb 06 2017

Formula

From A.H.M. Smeets, Nov 15 2023: (Start)
Equals {prime(m): A296240(m) == 0 (mod 5)}.
a(n) ~ prime(20*n). (End)

Extensions

More terms from James Sellers, Jan 25 2000
Edited by N. J. A. Sloane, Apr 01 2016

A005968 Sum of cubes of first n Fibonacci numbers.

Original entry on oeis.org

0, 1, 2, 10, 37, 162, 674, 2871, 12132, 51436, 217811, 922780, 3908764, 16558101, 70140734, 297121734, 1258626537, 5331629710, 22585142414, 95672204155, 405273951280, 1716768021816, 7272346018247, 30806152127640, 130496954475672, 552793970116297, 2341672834801754
Offset: 0

Keywords

Comments

From Alexander Adamchuk, Aug 07 2006: (Start)
The only two prime terms are a(2) = 2 and a(4) = 37.
The prime p divides a(p-1) iff p is in A045468.
The prime p divides a((p-1)/2) iff p is in A047650.
3^4 divides a(p) iff p is in A003628.
3^5 divides a(p) for p = {37,53,109,181,197,269,397,431,541,...}.
3^6 divides a(p) for p = {109,541,...}.
3^7 divides a(p) for p = {557,...}. (End)

References

  • Art Benjamin, Timothy A. Carnes, and Benoit Cloitre, Recounting the Sums of Cubes of Fibonacci Numbers, Congressus Numerantium, Proceedings of the Eleventh International Conference on Fibonacci Numbers and their Applications, (William Webb, ed.), Vol 194, pp. 45-51, 2009.
  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 14.
  • A. Brousseau, Fibonacci and Related Number Theoretic Tables. Fibonacci Association, San Jose, CA, 1972, p. 18.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Partial sums of A056570. Cf. A119284 (alternating sum).
Sums of other powers: A000071, A001654, A005969, A098531, A098532, A098533, A128697.

Programs

  • Magma
    [(1/10)*( Fibonacci(3*n+2)-(-1)^(n)*6*Fibonacci(n-1)+5 ): n in [0..30]]; // G. C. Greubel, Jan 17 2018
  • Maple
    with(combinat): l[0] := 0: for i from 1 to 50 do l[i] := l[i-1]+fibonacci(i)^3; printf(`%d,`,l[i]) od: # James Sellers, May 29 2000
    A005968:=(-1+2*z+z**2)/(z-1)/(z**2+4*z-1)/(z**2-z-1); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    f[n_]:=(Fibonacci[n]*Fibonacci[n+1]^2+(-1)^(n-1)*Fibonacci[n-1]+1)/2;Table[f[n],{n,0,5!}] (* Vladimir Joseph Stephan Orlovsky, Nov 22 2010 *)
    Accumulate[Fibonacci[Range[0,20]]^3]
    CoefficientList[Series[x*(1-2*x-x^2)/((1-x)*(1+x-x^2)*(1-4*x-x^2)), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 09 2013 *)
  • PARI
    a(n)=(fibonacci(n)*fibonacci(n+1)^2+(-1)^(n-1)*fibonacci(n-1)+1)/2
    
  • PARI
    a(n)=(fibonacci(3*n+2)-(-1)^(n)*6*fibonacci(n-1)+5)/10
    
  • PARI
    a(n)=sum(i=1,n,fibonacci(i)^3)
    

Formula

G.f.: x*(1-2*x-x^2)/((1-x)*(1+x-x^2)*(1-4*x-x^2)). - Ralf Stephan, Apr 23 2004
a(n) = (1/2)*(F(n)*F(n+1)^2 + (-1)^(n-1)*F(n-1) + 1). - Benoit Cloitre, Aug 06 2004
a(n) = Sum_{i=1..n} A000045(i)^3.
a(n) = (1/10)*(F(3*n+2) - (-1)^(n)*6*F(n-1) + 5). - Art Benjamin and Timothy A. Carnes
a(n+5) = 4*a(n+4) + 3*a(n+3) - 9*a(n+2) + 2*a(n+1) + a(n). - Benoit Cloitre, Sep 12 2004

Extensions

More terms from James Sellers, May 29 2000

A098531 Sum of fifth powers of first n Fibonacci numbers.

Original entry on oeis.org

0, 1, 2, 34, 277, 3402, 36170, 407463, 4491564, 49926988, 553211363, 6137270812, 68054635036, 754774491429, 8370420537086, 92830050637086, 1029498223070793, 11417322172518550, 126619992693837974, 1404237451180502875, 15573231068749231000
Offset: 0

Author

Benoit Cloitre, Sep 12 2004

Keywords

Comments

Prime p divides a((p-1)/2) for p = {29,89,101,181,229,...} = A047650[n]. Primes for which golden mean tau is a quadratic residue or Primes of the form x^2 + 20y^2. - Alexander Adamchuk, Aug 07 2006

Programs

  • Magma
    [(&+[Fibonacci(k)^5:k in [0..n]]): n in [0..30]]; // G. C. Greubel, Jan 17 2018
  • Mathematica
    Accumulate[Fibonacci[Range[0,20]]^5]  (* Harvey P. Dale, Jan 14 2011 *)
    CoefficientList[Series[x*(1-7*x-16*x^2+7*x^3+x^4)/((1-x)*(1+4*x-x^2)*(1-x-x^2)*(1-11*x-x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 13 2012 *)
  • PARI
    a(n)=sum(i=0,n,fibonacci(i)^5)
    

Formula

a(n) = -7/22 + 2*F(n+2)/5 + (F(5*(n+1)) + F(5*n))/(5*55) - (-1)^n*(F(3*(n+1)) - F(3*n))/(2*10), where F=A000045. One may use F(5*(n+1)) + F(5*n) = F(5*n+1) + 4*F(5*n+2) (due to the Binet-de Moivre formula).
G.f.: x*(1-7*x-16*x^2+7*x^3+x^4)/((1-x)*(1+4*x-x^2)*(1-x-x^2)*(1-11*x-x^2)). - Bruno Berselli, Oct 12 2012

Extensions

Formula corrected, with the author's consent, by Wolfdieter Lang, Oct 12 2012

A047652 Primes for which golden mean is a cubic residue.

Original entry on oeis.org

139, 151, 199, 331, 541, 619, 661, 709, 811, 829, 919, 1069, 1231, 1279, 1291, 1381, 1471, 1579, 1699, 1999, 2161, 2221, 2239, 2251, 2281, 2371, 2389, 2521, 2659, 2689, 2749, 3001, 3121, 3271, 3331, 3391, 3499, 3529, 3571, 3631, 3919, 4021, 4051, 4159
Offset: 1

Keywords

Comments

Primes of the form x^2 + xy + 34y^2, whose discriminant is -135. - T. D. Noe, May 17 2005
Primes of the form x^2 + 135*y^2. - Arkadiusz Wesolowski, May 31 2015

Crossrefs

Cf. A047650.

Programs

  • Mathematica
    Select[Prime[Range[1000]],IntegerQ[Fibonacci[(#1-1)/3]/#1]&] (* Alexander Adamchuk, Sep 16 2006 *)

Formula

Primes p that divide Fibonacci((p-1)/3). - Alexander Adamchuk, Sep 16 2006

Extensions

More terms from James Sellers, Jan 25 2000

A121569 a(n) = Fibonacci((prime(n)+3)/2) - 1.

Original entry on oeis.org

1, 2, 4, 12, 20, 54, 88, 232, 986, 1596, 6764, 17710, 28656, 75024, 317810, 1346268, 2178308, 9227464, 24157816, 39088168, 165580140, 433494436, 1836311902, 12586269024, 32951280098, 53316291172, 139583862444, 225851433716
Offset: 2

Author

Alexander Adamchuk, Aug 08 2006

Keywords

Comments

p = Prime[n] divides a(n) for p = {29,89,101,181,229,349,401,461,509,521,541,709,761,769,809,...} = A047650[n] Primes for which golden mean tau is a quadratic residue or Primes of the form x^2+20y^2.

Programs

  • Mathematica
    Table[Fibonacci[(Prime[n]+3)/2]-1,{n,2,50}]

Formula

a(n) = Fibonacci[ (Prime[n]+3)/2 ] - 1, n>1. a(n) = Sum[ Fibonacci[k], {k,1,(p-1)/2} ], p = Prime[n], n>1.

A366951 a(n) = 2*(p_n - 1)/A060305(n) iff p_n == +/- 1 (mod 5), 2*(p_n + 1)/A060305(n) iff p_n == +/- 2 (mod 5), 0 iff p_n = 5.

Original entry on oeis.org

2, 1, 0, 1, 2, 1, 1, 2, 1, 4, 2, 1, 2, 1, 3, 1, 2, 2, 1, 2, 1, 2, 1, 4, 1, 4, 1, 3, 2, 3, 1, 2, 1, 6, 2, 6, 1, 1, 1, 1, 2, 4, 2, 1, 1, 18, 10, 1, 1, 4, 9, 2, 2, 2, 1, 3, 2, 2, 1, 10, 1, 1, 7, 2, 1, 1, 6, 1, 3, 4, 3, 2, 1, 1, 2, 1, 2, 1, 4, 2, 2, 10, 2, 1, 2, 1
Offset: 1

Author

A.H.M. Smeets, Oct 29 2023

Keywords

Formula

a(n) == 0 (mod 2) for prime(n) == +/- 1 (mod 5) and n > 2.
a(n) == 1 (mod 2) for Prime(n) == +/- 2 (mod 5) and n > 2.
a(n) = 1 iff prime(n) in A071774.
a(n) = 2 iff prime(n) in ({2} union A003147)/{5}.
a(n) = 3 iff prime(n) in A308784.
a(n) = 4 iff prime(n) in A308787.
a(n) = 6 iff prime(n) in A308788.
a(n) = 7 iff prime(n) in A308785.
a(n) = 8 iff prime(n) in A308789.
a(n) = 9 iff prime(n) in A308786.
a(n) = 10 iff prime(n) in A308790.
a(n) = 12 iff prime(n) in A308791.
a(n) = 14 iff prime(n) in A308792.
a(n) = 16 iff prime(n) in A308793.
a(n) = 18 iff prime(n) in A308794.
a(n) = A296240(n) iff prime(n) == +/- 2 (mod 5) and n > 3.
a(n) = 2*A296240(n) iff prime(n) == +/- 1 (mod 5) and n > 3.
a(n) in {2^k: k > 1} iff prime(n) in {A047650}.
a(n) == 3 (mod 6) iff prime(n) in {A124096}.
a(n) == 6 (mod 12) iff prime(n) in {A046652}.
a(n) == 0 (mod 14) iff prime(n) in {A125252}.
Showing 1-8 of 8 results.