cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047653 Constant term in expansion of (1/2) * Product_{k=-n..n} (1 + x^k).

Original entry on oeis.org

1, 2, 4, 10, 26, 76, 236, 760, 2522, 8556, 29504, 103130, 364548, 1300820, 4679472, 16952162, 61790442, 226451036, 833918840, 3084255128, 11451630044, 42669225172, 159497648600, 597950875256, 2247724108772, 8470205600640, 31991616634296, 121086752349064
Offset: 0

Views

Author

Keywords

Comments

Or, constant term in expansion of Product_{k=1..n} (x^k + 1/x^k)^2. - N. J. A. Sloane, Jul 09 2008
Or, maximal coefficient of the polynomial (1+x)^2 * (1+x^2)^2 *...* (1+x^n)^2.
a(n) = A000302(n) - A181765(n).
From Gus Wiseman, Apr 18 2023: (Start)
Also the number of subsets of {1..2n} that are empty or have mean n. The a(0) = 1 through a(3) = 10 subsets are:
{} {} {} {}
{1} {2} {3}
{1,3} {1,5}
{1,2,3} {2,4}
{1,2,6}
{1,3,5}
{2,3,4}
{1,2,3,6}
{1,2,4,5}
{1,2,3,4,5}
Also the number of subsets of {-n..n} with no 0's but with sum 0. The a(0) = 1 through a(3) = 10 subsets are:
{} {} {} {}
{-1,1} {-1,1} {-1,1}
{-2,2} {-2,2}
{-2,-1,1,2} {-3,3}
{-3,1,2}
{-2,-1,3}
{-2,-1,1,2}
{-3,-1,1,3}
{-3,-2,2,3}
{-3,-2,-1,1,2,3}
(End)

Crossrefs

Cf. A025591.
Cf. A053632; variant: A127728.
For median instead of mean we have A079309(n) + 1.
Odd bisection of A133406.
A000980 counts nonempty subsets of {1..2n-1} with mean n.
A007318 counts subsets by length, A327481 by mean.

Programs

  • Maple
    f:=n->coeff( expand( mul((x^k+1/x^k)^2,k=1..n) ),x,0);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, 0,
          `if`(i=0, 1, 2*b(n, i-1)+b(n+i, i-1)+b(abs(n-i), i-1)))
        end:
    a:=n-> b(0, n):
    seq(a(n), n=0..40);  # Alois P. Heinz, Mar 10 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n>i*(i+1)/2, 0, If[i == 0, 1, 2*b[n, i-1]+b[n+i, i-1]+b[Abs[n-i], i-1]]]; a[n_] := b[0, n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 10 2014, after Alois P. Heinz *)
    nmax = 26; d = {1}; a1 = {};
    Do[
      i = Ceiling[Length[d]/2];
      AppendTo[a1, If[i > Length[d], 0, d[[i]]]];
      d = PadLeft[d, Length[d] + 2 n] + PadRight[d, Length[d] + 2 n] +
        2 PadLeft[PadRight[d, Length[d] + n], Length[d] + 2 n];
    , {n, nmax}];
    a1 (* Ray Chandler, Mar 15 2014 *)
    Table[Length[Select[Subsets[Range[2n]],Length[#]==0||Mean[#]==n&]],{n,0,6}] (* Gus Wiseman, Apr 18 2023 *)
  • PARI
    a(n)=polcoeff(prod(k=-n,n,1+x^k),0)/2
    
  • PARI
    {a(n)=sum(k=0,n*(n+1)/2,polcoeff(prod(m=1,n,1+x^m+x*O(x^k)),k)^2)} \\ Paul D. Hanna, Nov 30 2010

Formula

Sum of squares of coefficients in Product_{k=1..n} (1+x^k):
a(n) = Sum_{k=0..n(n+1)/2} A053632(n,k)^2. - Paul D. Hanna, Nov 30 2010
a(n) = A000980(n)/2.
a(n) ~ sqrt(3) * 4^n / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Sep 11 2014
From Gus Wiseman, Apr 18 2023 (Start)
a(n) = A133406(2n+1).
a(n) = A212352(n) + 1.
a(n) = A362046(2n) + 1.
(End)

Extensions

More terms from Michael Somos, Jun 10 2000