A047653 Constant term in expansion of (1/2) * Product_{k=-n..n} (1 + x^k).
1, 2, 4, 10, 26, 76, 236, 760, 2522, 8556, 29504, 103130, 364548, 1300820, 4679472, 16952162, 61790442, 226451036, 833918840, 3084255128, 11451630044, 42669225172, 159497648600, 597950875256, 2247724108772, 8470205600640, 31991616634296, 121086752349064
Offset: 0
Keywords
Links
- T. D. Noe, Alois P. Heinz and Ray Chandler, Table of n, a(n) for n = 0..1669 (terms < 10^1000, first 201 terms from T. D. Noe, next 200 terms from Alois P. Heinz)
- Ovidiu Bagdasar and Dorin Andrica, New results and conjectures on 2-partitions of multisets, 2017 7th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO).
- Dorin Andrica and Ovidiu Bagdasar, On k-partitions of multisets with equal sums, The Ramanujan J. (2021) Vol. 55, 421-435.
- R. C. Entringer, Representation of m as Sum_{k=-n..n} epsilon_k k, Canad. Math. Bull., 11 (1968), 289-293.
- Steven R. Finch, Signum equations and extremal coefficients, February 7, 2009. [Cached copy, with permission of the author]
- R. P. Stanley, Weyl groups, the hard Lefschetz theorem and the Sperner property, SIAM J. Algebraic and Discrete Methods 1 (1980), 168-184.
Crossrefs
Programs
-
Maple
f:=n->coeff( expand( mul((x^k+1/x^k)^2,k=1..n) ),x,0); # second Maple program: b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, 0, `if`(i=0, 1, 2*b(n, i-1)+b(n+i, i-1)+b(abs(n-i), i-1))) end: a:=n-> b(0, n): seq(a(n), n=0..40); # Alois P. Heinz, Mar 10 2014
-
Mathematica
b[n_, i_] := b[n, i] = If[n>i*(i+1)/2, 0, If[i == 0, 1, 2*b[n, i-1]+b[n+i, i-1]+b[Abs[n-i], i-1]]]; a[n_] := b[0, n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 10 2014, after Alois P. Heinz *) nmax = 26; d = {1}; a1 = {}; Do[ i = Ceiling[Length[d]/2]; AppendTo[a1, If[i > Length[d], 0, d[[i]]]]; d = PadLeft[d, Length[d] + 2 n] + PadRight[d, Length[d] + 2 n] + 2 PadLeft[PadRight[d, Length[d] + n], Length[d] + 2 n]; , {n, nmax}]; a1 (* Ray Chandler, Mar 15 2014 *) Table[Length[Select[Subsets[Range[2n]],Length[#]==0||Mean[#]==n&]],{n,0,6}] (* Gus Wiseman, Apr 18 2023 *)
-
PARI
a(n)=polcoeff(prod(k=-n,n,1+x^k),0)/2
-
PARI
{a(n)=sum(k=0,n*(n+1)/2,polcoeff(prod(m=1,n,1+x^m+x*O(x^k)),k)^2)} \\ Paul D. Hanna, Nov 30 2010
Formula
Sum of squares of coefficients in Product_{k=1..n} (1+x^k):
a(n) = Sum_{k=0..n(n+1)/2} A053632(n,k)^2. - Paul D. Hanna, Nov 30 2010
a(n) = A000980(n)/2.
a(n) ~ sqrt(3) * 4^n / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Sep 11 2014
From Gus Wiseman, Apr 18 2023 (Start)
a(n) = A133406(2n+1).
a(n) = A212352(n) + 1.
a(n) = A362046(2n) + 1.
(End)
Extensions
More terms from Michael Somos, Jun 10 2000
Comments