cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A047837 Honaker's triangle problem: form a triangle with base of length n, all entries different, all row sums equal; a(n) gives minimal row sum.

Original entry on oeis.org

1, 3, 8, 15, 27, 43, 65, 94, 130, 175, 229, 294, 369, 456, 557, 671, 800, 944, 1105, 1283, 1479, 1695, 1930, 2187, 2465, 2765, 3090, 3439, 3813, 4213, 4641, 5096, 5580, 6095, 6639, 7216, 7825, 8466, 9143, 9855
Offset: 1

Views

Author

Keywords

Comments

Suggested by G. L. Honaker, Jr.
Agrees with A047873 at least for n < 365, conjectured to always agree.

Examples

			a(1)..a(4), 1 // 3; 1 2 // 8; 2 6; 1 3 4 // 15; 7 8; 4 5 6; 1 2 3 9.
a(6) = 43, 21 22; 8 16 19; 5 9 12 17; 3 4 7 14 15; 1 2 6 10 11 13.
a(7) = 65, 32 33; 20 21 24; 14 15 17 19; 9 10 11 12 23; 5 6 7 13 16 18; 1 2 3 4 8 22 25.
		

References

  • Pickover, C. A., The Zen of Magic Squares, Circles and Stars: An Exhibition Of Surprising Structures Across Dimensions, Princeton University Press, 2002 (pp. 289-292).

Crossrefs

Cf. A047866.

Formula

Appears to obey a 16-term linear recurrence. - Ralf Stephan, May 06 2004
Empirical g.f.: -x*(x^15 - 3*x^14 + 3*x^13 - 5*x^12 + 5*x^11 - 9*x^10 + 7*x^9 - 10*x^8 + 7*x^7 - 9*x^6 + 5*x^5 - 6*x^4 + 2*x^3 - 3*x^2 - 1) / ((x-1)^4*(x^2-x+1)*(x^2+1)*(x^2+x+1)^2*(x^4-x^2+1)). - Colin Barker, Jan 18 2013

A109900 The (n,r)-th term of the following triangle is T(n)-T(r) for r = 0 to n. The n-th row contains n+1 terms. T(n) = the n-th triangular number = n(n+1)/2. Sequence contains the sum of terms at a 45-degree angle.

Original entry on oeis.org

0, 1, 3, 8, 15, 27, 42, 64, 90, 125, 165, 216, 273, 343, 420, 512, 612, 729, 855, 1000, 1155, 1331, 1518, 1728, 1950, 2197, 2457, 2744, 3045, 3375, 3720, 4096, 4488, 4913, 5355, 5832, 6327, 6859, 7410, 8000, 8610, 9261, 9933, 10648, 11385, 12167, 12972
Offset: 0

Views

Author

Amarnath Murthy, Jul 13 2005

Keywords

Comments

Initial terms match those of A047866 with a difference of +1 or -1 in some cases. A047866: 0, 1, 3, 8, 15, 27, 42, 63, 90, 124, 165, 215, ...

Examples

			The (n,r)-th term of the following triangle is T(n)-T(r) for r = 0 to n. The n-th row contains n+1 terms.
   0
   1  0
   3  2  0
   6  5  3  0
  10  9  7  4  0
  15 14 12  9  5  0
  21 20 18 15 11  6  0
  28 27 ...
  36 ...
Sequence contains the sum of terms at a 45-degree angle.
a(5) = 15 + 9 + 3 = 27.
		

Crossrefs

Programs

  • Maple
    A109900 := proc(n) if n mod 2 = 1 then ( (n+1)/2)^3 ; else (n+1)*(n/2+1)*(n/2)/2 ; fi ; end: seq(A109900(n),n=0..80) ; # R. J. Mathar, Feb 11 2008
  • Mathematica
    LinearRecurrence[{2, 1, -4, 1, 2, -1}, {0, 1, 3, 8, 15, 27}, 50] (* Amiram Eldar, Sep 17 2022 *)

Formula

a(2n+1) = (n+1)^3; a(2n) = (2n+1)*T(n) = (2n+1)*(n+1)*n/2, where T=A000217. - R. J. Mathar, Feb 11 2008
a(n) = A034828(n+1). - R. J. Mathar, Aug 18 2008
G.f.: x*(1+x+x^2)/(1-2*x-x^2+4*x^3-x^4-2*x^5+x^6). - Colin Barker, Jan 04 2012
a(n) = (2*n^3+6*n^2+5*n+1-(n+1)*(-1)^n)/16. - Luce ETIENNE, May 12 2015
a(n) = Sum_{k=0..n} A001318(k). - Jacob Szlachetka, Dec 20 2021
Sum_{n>=1} 1/a(n) = 6 - 8*log(2) + zeta(3). - Amiram Eldar, Sep 17 2022

Extensions

Corrected and extended by R. J. Mathar, Feb 11 2008

A316224 a(n) = n*(2*n + 1)*(4*n + 1).

Original entry on oeis.org

0, 15, 90, 273, 612, 1155, 1950, 3045, 4488, 6327, 8610, 11385, 14700, 18603, 23142, 28365, 34320, 41055, 48618, 57057, 66420, 76755, 88110, 100533, 114072, 128775, 144690, 161865, 180348, 200187, 221430, 244125, 268320, 294063, 321402, 350385, 381060, 413475, 447678, 483717
Offset: 0

Views

Author

Bruno Berselli, Jun 27 2018

Keywords

Comments

Sums of the consecutive integers from A000384(n) to A000384(n+1)-1. This is the case s=6 of the formula n*(n*(s-2) + 1)*(n*(s-2) + 2)/2 related to s-gonal numbers.
The inverse binomial transform is 0, 15, 60, 48, 0, ... (0 continued).

Examples

			Row sums of the triangle:
|  0 |  ................................................................. 0
|  1 |  2  3  4  5  .................................................... 15
|  6 |  7  8  9 10 11 12 13 14  ........................................ 90
| 15 | 16 17 18 19 20 21 22 23 24 25 26 27  ........................... 273
| 28 | 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44  ............... 612
| 45 | 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65  .. 1155
...
where:
. first column is A000384,
. second column is A130883 (without 1),
. third column is A033816,
. diagonal is A014106,
. 0, 2, 8, 18, 32, 50, ... are in A001105.
		

Crossrefs

First bisection of A059270 and subsequence of A034828, A047866, A109900, A290168.
Sums of the consecutive integers from P(s,n) to P(s,n+1)-1, where P(s,k) is the k-th s-gonal number: A027480 (s=3), A055112 (s=4), A228888 (s=5).

Programs

  • GAP
    List([0..40], n -> n*(2*n+1)*(4*n+1));
    
  • Julia
    [n*(2*n+1)*(4*n+1) for n in 0:40] |> println
  • Magma
    [n*(2*n+1)*(4*n+1): n in [0..40]];
    
  • Maple
    seq(n*(2*n+1)*(4*n+1),n=0..40); # Muniru A Asiru, Jun 27 2018
  • Mathematica
    Table[n (2 n + 1) (4 n + 1), {n, 0, 40}]
  • Maxima
    makelist(n*(2*n+1)*(4*n+1), n, 0, 40);
    
  • PARI
    vector(40, n, n--; n*(2*n+1)*(4*n+1))
    
  • Python
    [n*(2*n+1)*(4*n+1) for n in range(40)]
    
  • Sage
    [n*(2*n+1)*(4*n+1) for n in (0..40)]
    

Formula

O.g.f.: 3*x*(5 + 10*x + x^2)/(1 - x)^4.
E.g.f.: x*(15 + 30*x + 8*x^2)*exp(x).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = 3*A258582(n).
a(n) = -3*A100157(-n).
Sum_{n>0} 1/a(n) = 2*(3 - log(4)) - Pi.
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2) + 2*sqrt(2)*log(1+sqrt(2)) + (sqrt(2)-1/2)*Pi - 6. - Amiram Eldar, Sep 17 2022

A047873 a(n) = max_{r=1..n-1} ceiling(t(t(n)-t(r-1))/(n-r+1)), where t() = triangular numbers A000217.

Original entry on oeis.org

1, 3, 8, 15, 27, 43, 65, 94, 130, 175, 229, 294, 369, 456, 557, 671, 800, 944, 1105, 1283, 1479, 1695, 1930, 2187, 2465, 2765, 3090, 3439, 3813, 4213, 4641, 5096, 5580, 6095, 6639, 7216, 7825, 8466, 9143, 9855
Offset: 1

Views

Author

Keywords

Comments

Another lower bound for Honaker triangle problem (A047837); conjectured to be exact value.

Crossrefs

Formula

Empirical g.f.: -x*(x^15 - 3*x^14 + 3*x^13 - 5*x^12 + 5*x^11 - 9*x^10 + 7*x^9 - 10*x^8 + 7*x^7 - 9*x^6 + 5*x^5 - 6*x^4 + 2*x^3 - 3*x^2 - 1) / ((x-1)^4*(x^2-x+1)*(x^2+1)*(x^2+x+1)^2*(x^4-x^2+1)). [Colin Barker, Jan 18 2013]
Showing 1-4 of 4 results.