A047929 a(n) = n^2*(n-1)*(n-2).
0, 18, 96, 300, 720, 1470, 2688, 4536, 7200, 10890, 15840, 22308, 30576, 40950, 53760, 69360, 88128, 110466, 136800, 167580, 203280, 244398, 291456, 345000, 405600, 473850, 550368, 635796, 730800, 836070, 952320, 1080288, 1220736
Offset: 2
Links
- Vincenzo Librandi, Table of n, a(n) for n = 2..1000
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
- Index entries for sequences related to parenthesizing
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Magma
[n^2*(n-1)*(n-2): n in [2..40]]; // Vincenzo Librandi, May 02 2011
-
Mathematica
Drop[CoefficientList[Series[6 x^3*(3 + x)/(1 - x)^5, {x, 0, 34}], x], 2] (* Michael De Vlieger, May 21 2021 *)
-
PARI
a(n)=n^4 - 3*n^3 + 2*n^2 \\ Charles R Greathouse IV, May 02 2011
Formula
a(n) = A004320(n-2)*6.
G.f.: 6*x^3*(3 + x)/(1 - x)^5. - Stefano Spezia, May 20 2021
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Wesley Ivan Hurt, May 22 2021
From Amiram Eldar, May 25 2021: (Start)
Sum_{n>=3} 1/a(n) = (Pi^2 - 9)/12.
Sum_{n>=3} (-1)^(n+1)/a(n) = Pi^2/24 + 2*log(2) - 7/4. (End)
Comments