A047970 Antidiagonal sums of nexus numbers (A047969).
1, 2, 5, 14, 43, 144, 523, 2048, 8597, 38486, 182905, 919146, 4866871, 27068420, 157693007, 959873708, 6091057009, 40213034874, 275699950381, 1959625294310, 14418124498211, 109655727901592, 860946822538675, 6969830450679864, 58114638923638573
Offset: 0
Keywords
Examples
a(3) = 1 + 5 + 7 + 1 = 14. From _Paul D. Hanna_, Jul 22 2014: (Start) G.f. A(x) = 1 + 2*x + 5*x^2 + 14*x^3 + 43*x^4 + 144*x^5 + 523*x^6 + 2048*x^7 + ... where we have the series identity: A(x) = (1-x)*( 1/(1-2*x) + x/(1-3*x) + x^2/(1-4*x) + x^3/(1-5*x) + x^4/(1-6*x) + x^5/(1-7*x) + x^6/(1-8*x) + ...) is equal to A(x) = 1/(1-x) + x/((1-x)*(1-2*x)) + x^2/((1-2*x)*(1-3*x)) + x^3/((1-3*x)*(1-4*x)) + x^4/((1-4*x)*(1-5*x)) + x^5/((1-5*x)*(1-6*x)) + x^6/((1-6*x)*(1-7*x)) + ... and also equals A(x) = 1/((1-x)*(1+x)) + 2!*x/((1-x)^2*(1+x)*(1+2*x)) + 3!*x^2/((1-x)^3*(1+x)*(1+2*x)*(1+3*x)) + 4!*x^3/((1-x)^4*(1+x)*(1+2*x)*(1+3*x)*(1+4*x)) + ... (End) From _Joerg Arndt_, Mar 08 2015: (Start) There are a(4-1)=14 length-4 RGS as in the comment (dots denote zeros): 01: [ . . . . ] 02: [ . . . 1 ] 03: [ . . 1 . ] 04: [ . . 1 1 ] 05: [ . 1 . . ] 06: [ . 1 . 1 ] 07: [ . 1 . 2 ] 08: [ . 1 1 . ] 09: [ . 1 1 1 ] 10: [ . 1 1 2 ] 11: [ . 1 2 . ] 12: [ . 1 2 1 ] 13: [ . 1 2 2 ] 14: [ . 1 2 3 ] (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..300
- G. E. Andrews, The Theory of Partitions, 1976, page 242 table of Gaussian polynomials.
- David Callan, The number of bar(31)542-avoiding permutations, arXiv:1111.3088 [math.CO], 2011.
- Rupert Li, Vincular Pattern Avoidance on Cyclic Permutations, arXiv:2107.12353 [math.CO], 2021.
- Zhicong Lin and Sherry H. F. Yan, Vincular patterns in inversion sequences, Applied Mathematics and Computation (2020), Vol. 364, 124672.
- Megan A. Martinez and Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016.
- Lara Pudwell, Enumeration Schemes for Pattern-Avoiding Words and Permutations, Ph. D. Dissertation, Math. Dept., Rutgers University, May 2008.
- Lara Pudwell, Enumeration schemes for permutations avoiding barred patterns, El. J. Combinat. 17 (1) (2010) R29.
- Eric Weisstein's World of Mathematics, Nexus Number
- Chunyan Yan and Zhicong Lin, Inversion sequences avoiding pairs of patterns, arXiv:1912.03674 [math.CO], 2019.
Crossrefs
Programs
-
Maple
T := proc(n, k) option remember; local j; if k=n then 1 elif k>n then 0 else (k+1)*T(n-1, k) + add(T(n-1, j), j=k..n) fi end: A047970 := n -> T(n,0); seq(A047970(n), n=0..24); # Peter Luschny, May 14 2014
-
Mathematica
a[ n_] := SeriesCoefficient[ ((1 - x) Sum[ x^k / (1 - (k + 2) x), {k, 0, n}]), {x, 0, n}]; (* Michael Somos, Jul 09 2014 *)
-
PARI
/* From o.g.f. (Paul D. Hanna, Jul 20 2014) */ {a(n)=polcoeff( sum(m=0, n, (m+1)!*x^m/(1-x)^(m+1)/prod(k=1, m+1, 1+k*x +x*O(x^n))), n)} for(n=0, 25, print1(a(n), ", "))
-
PARI
/* From o.g.f. (Paul D. Hanna, Jul 22 2014) */ {a(n)=polcoeff( sum(m=0, n, x^m/((1-m*x)*(1-(m+1)*x +x*O(x^n)))), n)} for(n=0, 25, print1(a(n), ", "))
-
Sage
def A074664(): T = []; n = 0 while True: T.append(1) yield T[0] for k in (0..n): T[k] = (k+1)*T[k] + add(T[j] for j in (k..n)) n += 1 a = A074664() [next(a) for n in range(25)] # Peter Luschny, May 13 2014
Formula
Formal o.g.f.: (1 - x)*( Sum_{n >= 0} x^n/(1 - (n + 2)*x) ). - Peter Bala, Jul 09 2014
O.g.f.: Sum_{n>=0} (n+1)! * x^n/(1-x)^(n+1) / Product_{k=1..n+1} (1 + k*x). - Paul D. Hanna, Jul 20 2014
O.g.f.: Sum_{n>=0} x^n / ( (1 - n*x) * (1 - (n+1)*x) ). - Paul D. Hanna, Jul 22 2014
From Mathew Englander, Feb 28 2021: (Start)
a(n) = Sum_{m = 1..n+1} Sum_{i = 0..m-1} binomial(m,i) * (n-m+1)^i.
a(n) = 1 + Sum_{i = 0..n} i * (i+1)^(n-i). (End)
a(n) ~ sqrt(2*Pi*n / (w*(1+w))) * (1 + n/w)^(1 + n - n/w), where w = LambertW(exp(1)*n). - Vaclav Kotesovec, Jun 10 2025
Comments