cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 59 results. Next

A064115 Numbers k such that k and k+1 have the same sum of non-unitary divisors (A048146), for A048146(k) > 0.

Original entry on oeis.org

188, 1484, 3915, 14750, 19196, 20150, 79947, 164996, 190484, 219375, 253827, 639387, 718011, 835515, 1172374, 1380483, 2026323, 2064249, 3611708, 5507540, 6128108, 6374403, 6872984, 10073132, 10558250, 11360547, 12770450, 13000635, 14458364, 16366292, 19127907
Offset: 1

Views

Author

Jason Earls, Sep 09 2001

Keywords

Comments

The sequence snud(a(n)) = snud(1 + a(n)) is A103846(n). - Emeric Deutsch, Feb 17 2005

Examples

			snud(1484) = 864, snud(1485) = 864.
		

Crossrefs

Programs

  • Mathematica
    nusigma[1]=0; nusigma[n_] := DivisorSigma[1, n] - Times @@ (1 + Power @@@ FactorInteger[n]); seq={}; s1=0; Do[s2=nusigma[n]; If[s1>0 && s2==s1, AppendTo[seq, n-1]]; s1=s2, {n, 1, 10^6}]; seq (* Amiram Eldar, Jun 10 2019 *)
  • PARI
    snud(n)= { sumdiv(n, d, if(gcd(d, n/d)!=1, d)) }
    { n=0; for (m=1, 10^9, s=snud(m); if (s>0 && s==snud(m + 1), write("b064115.txt", n++, " ", m); if (n==30, break)) ) } \\ Harry J. Smith, Sep 07 2009

Extensions

More terms from Emeric Deutsch, Feb 17 2005

A325813 a(n) = gcd(A034448(n)-n, n-A048146(n)), where A034448 and A048146 are respectively the sum of unitary and non-unitary divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 4, 1, 2, 3, 1, 1, 3, 1, 2, 1, 2, 1, 12, 1, 2, 1, 12, 1, 6, 1, 1, 3, 2, 1, 1, 1, 2, 1, 2, 1, 6, 1, 4, 3, 2, 1, 4, 1, 7, 3, 6, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 1, 1, 1, 6, 1, 2, 3, 2, 1, 3, 1, 2, 1, 12, 1, 6, 1, 2, 1, 2, 1, 4, 1, 2, 3, 4, 1, 18, 7, 4, 1, 2, 5, 12, 1, 1, 21, 1, 1, 6, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, May 23 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A034460(n), A325814(n)).

A325814 a(n) = n - A048146(n), where A048146 is the sum of non-unitary divisors of n.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 2, 6, 10, 11, 4, 13, 14, 15, 2, 17, 9, 19, 8, 21, 22, 23, 0, 20, 26, 15, 12, 29, 30, 31, 2, 33, 34, 35, -5, 37, 38, 39, 4, 41, 42, 43, 20, 27, 46, 47, -8, 42, 35, 51, 24, 53, 18, 55, 8, 57, 58, 59, 12, 61, 62, 39, 2, 65, 66, 67, 32, 69, 70, 71, -33, 73, 74, 55, 36, 77, 78, 79, -4, 42, 82, 83, 20
Offset: 1

Views

Author

Antti Karttunen, May 23 2019

Keywords

Crossrefs

Cf. also A325314.

Programs

Formula

a(n) = n - A048146(n).
a(n) = A033879(n) + A034460(n).
a(A228058(n)) = A325824(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = 1/2 - zeta(2) * (1 - 1/zeta(3)) / 2 = 0.3617493553... . - Amiram Eldar, Feb 22 2024

A325974 Arithmetic mean of {sum of non-unitary divisors} and {sum of nonsquarefree divisors}: a(n) = (1/2)*(A048146(n) + A162296(n)).

Original entry on oeis.org

0, 0, 0, 3, 0, 0, 0, 9, 6, 0, 0, 12, 0, 0, 0, 21, 0, 18, 0, 18, 0, 0, 0, 36, 15, 0, 24, 24, 0, 0, 0, 45, 0, 0, 0, 60, 0, 0, 0, 54, 0, 0, 0, 36, 36, 0, 0, 84, 28, 45, 0, 42, 0, 72, 0, 72, 0, 0, 0, 72, 0, 0, 48, 93, 0, 0, 0, 54, 0, 0, 0, 144, 0, 0, 60, 60, 0, 0, 0, 126, 78, 0, 0, 96, 0, 0, 0, 108, 0, 108, 0, 72, 0, 0, 0, 180, 0, 84, 72
Offset: 1

Views

Author

Antti Karttunen, Jun 02 2019

Keywords

Examples

			For n = 36, its divisors are 1, 2, 3, 4, 6, 9, 12, 18, 36. Of these, non-unitary divisors are 2, 3, 6, 12 and 18 so A048146(36) = 2+3+6+12+18 = 41, while the nonsquarefree divisors are 4, 9, 12, 18 and 36, so A162296(36) = 4+9+12+18+36 = 79, thus a(36) = (41+79)/2 = 60.
		

Crossrefs

Programs

Formula

a(n) = (1/2)*(A048146(n) + A162296(n)).
a(n) = A000203(n) - A325973(n).
a(n) = n - A325978(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = zeta(2)*(1/2 - 1/(4*zeta(3))) - 1/4 = 0.2303588390... . - Amiram Eldar, Feb 22 2024

A329882 Nonunitary superabundant numbers: numbers m such that nusigma(m)/m > nusigma(k)/k for all k < m, where nusigma(m) is the sum of nonunitary divisors of m (A048146).

Original entry on oeis.org

1, 4, 8, 16, 24, 36, 48, 72, 144, 288, 360, 432, 720, 1440, 1800, 2160, 3600, 7200, 10800, 15120, 21600, 25200, 50400, 75600, 151200, 302400, 453600, 529200, 831600, 1058400, 1663200, 2116800, 3175200, 3326400, 4989600, 5821200, 9979200, 11642400, 21621600
Offset: 1

Views

Author

Amiram Eldar, Nov 23 2019

Keywords

Crossrefs

The nonunitary version of A004394.

Programs

  • Mathematica
    usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); nusigma[n_] := DivisorSigma[1, n] - usigma[n]; rm = -1; s = {}; Do[r = nusigma[n]/n; If[r > rm, rm = r; AppendTo[s, n]], {n, 1, 10000}]; s

A329883 Nonunitary highly abundant numbers: numbers m such that nusigma(m) > nusigma(k) for all k < m, where s(n) is the sum of nonunitary divisors of n (A048146).

Original entry on oeis.org

1, 4, 8, 12, 16, 24, 32, 36, 48, 64, 72, 96, 108, 120, 144, 180, 192, 216, 288, 360, 432, 504, 576, 648, 720, 864, 1008, 1080, 1296, 1440, 1728, 1800, 2016, 2160, 2520, 2880, 3024, 3240, 3456, 3528, 3600, 4320, 5040, 5400, 5760, 6048, 6480, 7056, 7200, 8640
Offset: 1

Views

Author

Amiram Eldar, Nov 23 2019

Keywords

Comments

The corresponding record values are 0, 2, 6, 8, 14, 24, 30, 41, 56, 62, 105, 120, 140, 144, 233, 246, 248, 348, 489, 630, 764, 840, ...

Crossrefs

The nonunitary version of A002093.

Programs

  • Mathematica
    usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); nusigma[n_] := DivisorSigma[1, n] - usigma[n]; num = -1; s = {}; Do[nu = nusigma[n]; If[nu > num, num = nu; AppendTo[s, n]], {n, 1, 10^4}]; s

A325812 Numbers k such that gcd(A034448(k)-k, k-A048146(k)) is equal to abs(k-A048146(k)).

Original entry on oeis.org

1, 6, 12, 28, 56, 60, 108, 120, 132, 168, 264, 280, 312, 408, 420, 440, 456, 496, 528, 540, 552, 696, 700, 728, 744, 756, 760, 888, 984, 992, 1032, 1128, 1140, 1188, 1272, 1404, 1416, 1456, 1464, 1608, 1704, 1710, 1752, 1836, 1896, 1992, 2052, 2136, 2328, 2424, 2472, 2484, 2568, 2616, 2646, 2712, 3048, 3132, 3144, 3288, 3336, 3344
Offset: 1

Views

Author

Antti Karttunen, May 23 2019

Keywords

Comments

Numbers k for which A325813(k) is equal to abs(A325814(k)).
Numbers k such that A325814(k) is not zero (not in A064591) and divides A034460(k).
Conjecture: after the initial one all other terms are even. If this holds then there are no odd perfect numbers.

Crossrefs

Cf. A000396 (a subsequence).

Programs

A329879 Numbers k such that k and nusigma(k) have the same set of prime divisors, where nusigma(k) is the sum of nonunitary divisors of k (A048146).

Original entry on oeis.org

4, 9, 24, 25, 49, 54, 112, 121, 150, 169, 289, 294, 361, 480, 529, 726, 750, 841, 961, 1014, 1369, 1681, 1734, 1849, 1984, 2058, 2166, 2209, 2430, 2520, 2688, 2809, 3174, 3481, 3721, 3780, 4489, 5041, 5046, 5329, 5760, 5766, 6241, 6889, 7921, 7986, 8214, 8700
Offset: 1

Views

Author

Amiram Eldar, Nov 23 2019

Keywords

Comments

Numbers k such that rad(nusigma(k)) = rad(k), where rad(k) is the squarefree kernel of k (A007947).

Crossrefs

Programs

  • Mathematica
    rad[n_] := Times @@ (First@# & /@ FactorInteger@ n); usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); nusigma[n_] := DivisorSigma[1, n] - usigma[n]; Select[Range[10^4], rad[nusigma[#]] == rad[#] &]

A329884 Nonunitary superperfect numbers: numbers k such that nusigma(nusigma(k)) = k, where nusigma(k) = sigma(k) - usigma(k) is the sum of nonunitary divisors of k (A048146).

Original entry on oeis.org

24, 48, 56, 112, 192, 248, 252, 328, 448, 496, 768, 1016, 1792, 1984, 2032, 3240, 6462, 7936, 8128, 11616, 11808, 17412, 20538, 32512, 49152, 65528, 114688, 131056, 507904, 524224, 786432, 1048568, 1835008, 2080768, 2096896, 2097136, 3145728, 4194296, 7340032
Offset: 1

Views

Author

Amiram Eldar, Nov 23 2019

Keywords

Comments

Analogous to superperfect numbers (A019279) as nonunitary perfect numbers (A064591) is analogous to perfect numbers (A000396).

Crossrefs

Programs

  • Mathematica
    usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); nusigma[n_] := DivisorSigma[1, n] - usigma[n]; Select[Range[10^6], nusigma[nusigma[#]] == # &]

A063885 z(sigma(n)) = 2n, where z(n) = A048146.

Original entry on oeis.org

24, 1536, 1631, 47360, 82458
Offset: 1

Views

Author

Jason Earls, Aug 28 2001

Keywords

Crossrefs

Programs

  • PARI
    u(n) = sumdiv(n,d, if(gcd(d,n/d)==1,d));
    z(n) = sigma(n)-u(n);
    for(n=1,10^7, if(z(sigma(n))==2*n,print1(n, ", ")))
Showing 1-10 of 59 results. Next