cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A103846 Sum of the non-unitary divisors of A064115(n) (or of 1+A064115(n)).

Original entry on oeis.org

96, 864, 2160, 5400, 9600, 6720, 46080, 94080, 108864, 191968, 138240, 345600, 380160, 482976, 287280, 806400, 1016064, 777600, 1814400, 3317760, 3686400, 3352320, 5491200, 5160960, 3839400, 5702400, 4976640, 7464960, 7711200, 8259840, 10108800, 12005760, 10886400
Offset: 1

Views

Author

Emeric Deutsch, Feb 17 2005

Keywords

Examples

			A103846(1)=96 is the sum of the non-unitary divisors of A064115(1)=188 and also of 1+A064115(1)=189: 2+94=96 and 3+9+21+63=96.
		

Crossrefs

Programs

  • Mathematica
    nusigma[1]=0; nusigma[n_] := DivisorSigma[1,n] - Times @@ (1 + Power @@@ FactorInteger[n]); seq={}; s1=0; Do[s2=nusigma[n]; If[s1>0 && s2==s1, AppendTo[seq, s1]]; s1=s2, {n,1,10^6}]; seq (* Amiram Eldar, Jun 10 2019 *)

Extensions

More terms from Amiram Eldar, Jun 10 2019

A324295 Numbers k such that s(k) = s(k+1) where s(k) is the sum of divisors of k that are smaller than sqrt(k) (A070039).

Original entry on oeis.org

2, 3, 4, 186, 318, 434, 473, 582, 730, 978, 1024, 1035, 1245, 1357, 1397, 1506, 1661, 1902, 2085, 2116, 2224, 2329, 2453, 2505, 2506, 2770, 2954, 3144, 3345, 3377, 3624, 3641, 3765, 3790, 3882, 4037, 4172, 4438, 4898, 4938, 4975, 5221, 6126, 6285, 6312, 6356
Offset: 1

Views

Author

Amiram Eldar, Sep 03 2019

Keywords

Examples

			186 is in the sequence since A070039(186) = A070039(187) = 12.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := DivisorSum[n, # &, # < Sqrt[n] &]; seq={}; s1 = 0; Do[s2 = s[n]; If[s1 == s2, AppendTo[seq, n - 1]]; s1 = s2, {n, 2, 6500}]; seq

A344314 Number k such that k and k+1 have the same number of nonunitary divisors (A048105).

Original entry on oeis.org

1, 2, 5, 6, 10, 13, 14, 21, 22, 27, 29, 30, 33, 34, 37, 38, 41, 42, 44, 46, 57, 58, 61, 65, 66, 69, 70, 73, 75, 77, 78, 82, 85, 86, 93, 94, 98, 101, 102, 105, 106, 109, 110, 113, 114, 116, 118, 122, 124, 129, 130, 133, 135, 137, 138, 141, 142, 145, 147, 154, 157
Offset: 1

Views

Author

Amiram Eldar, May 14 2021

Keywords

Examples

			1 is a term since A048105(1) = A048105(2) = 0.
27 is a term since A048105(27) = A048105(28) = 2.
		

Crossrefs

Programs

  • Mathematica
    nd[n_] := DivisorSigma[0, n] - 2^PrimeNu[n]; Select[Range[200], nd[#] == nd[# + 1] &]

A164522 Numbers k such that sigma_odd(k) = sigma_odd(k+1), where sigma_odd(k) is the sum of the odd divisors of k (A000593).

Original entry on oeis.org

1, 27089, 115289, 233729, 2529090, 2880989, 14059709, 17192909, 17540250, 18693990, 34902630, 54722249, 58517910, 82200689, 83087730, 92991990, 93623250, 93862230, 96578369, 111681990, 112244369, 155120129, 206450369, 269626769, 293182469, 303206310, 324764910
Offset: 1

Views

Author

Amiram Eldar, Aug 12 2019

Keywords

Examples

			27089 is in the sequence since A000593(27089) = A000593(27089 + 1) = 27456.
		

Crossrefs

Programs

  • Magma
    v:=[&+[d:d in Divisors(m)|IsOdd(d)] :m in [1..5000000]]; [k:k in [1..#v-1]| v[k] eq v[k+1]]; // Marius A. Burtea, Aug 12 2019
  • Mathematica
    f[p_, e_] := If[p == 2, 1, (p^(e+1)-1)/(p-1)]; s[1] = 1; s[1] = 1; s[n_] := Times @@ (f @@@ FactorInteger[n]); s1=0; seq={}; Do[s2 = s[n]; If[s2 == s1, AppendTo[ seq, n-1]]; s1 = s2, {n, 1, 10^6}]; seq

A164557 Numbers k such that s(k) = s(k+1), where s(k) is the sum of divisors d of k such that k/d is odd (A002131).

Original entry on oeis.org

3, 6, 7, 10, 22, 31, 46, 58, 69, 82, 106, 127, 140, 154, 160, 166, 178, 226, 262, 286, 346, 358, 382, 466, 478, 502, 562, 586, 718, 748, 781, 838, 862, 886, 982, 1001, 1018, 1066, 1186, 1282, 1299, 1306, 1318, 1366, 1438, 1486, 1522, 1614, 1618, 1672, 1704, 1822
Offset: 1

Views

Author

Amiram Eldar, Aug 12 2019

Keywords

Examples

			3 is in the sequence since A002131(3) = A002131(3 + 1) = 4.
		

Crossrefs

Programs

  • Magma
    v:=[&+[d:d in Divisors(m)|IsOdd(Floor(m/d))] :m in [1..2000]]; [k:k in [1..#v-1]| v[k] eq v[k+1]]; // Marius A. Burtea, Aug 12 2019
  • Mathematica
    f[p_, e_] := If[p == 2, p^e, (p^(e+1)-1)/(p-1)]; s[1] = 1; s[1] = 1; s[n_] := Times @@ (f @@@ FactorInteger[n]); s1=0; seq={}; Do[s2 = s[n]; If[s2 == s1, AppendTo[seq, n-1]]; s1 = s2, {n, 1, 2000}]; seq

A348346 Numbers k such that k and k+1 have the same positive sum of noninfinitary divisors (A348271).

Original entry on oeis.org

20150, 52767, 99296, 835515, 1241504, 2199392, 6294015, 11158496, 12770450, 17016416, 19127907, 20128544, 23686748, 24790688, 26580554, 33366015, 34385247, 39687651, 42106976, 44157087, 45466676, 59825349, 60832449, 73780244, 75268775, 81654650, 84696849, 111457213
Offset: 1

Views

Author

Amiram Eldar, Oct 13 2021

Keywords

Comments

Numbers k such that A348271(k) = A348271(k+1) > 0.
The terms are restricted to have a positive sum of noninfinitary divisors, since there are many consecutive numbers without noninfinitary divisors (these are the terms of A036537).

Examples

			20150 is a term since A348271(20150) = A348271(20151) = 6720.
		

Crossrefs

Subsequence of A162643.
Similar sequences: A002961, A064115, A064125, A293183, A306985.

Programs

  • Mathematica
    f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ f @@@ FactorInteger[n]; s[n_] := DivisorSigma[1,n] - isigma[n]; Select[Range[10^5], (s1 = s[#]) > 0 && s1 == s[# + 1] &]

A333949 Numbers k such that s(k) = s(k+1), where s(k) is the sum of recursive divisors of k (A333926).

Original entry on oeis.org

14, 206, 957, 1334, 1364, 1485, 1634, 2685, 2974, 4136, 4364, 14841, 20145, 24957, 33998, 36566, 42818, 64672, 74918, 79826, 79833, 84134, 86343, 92685, 109864, 111506, 122073, 138237, 147454, 159711, 162602, 166934, 187863, 190773, 193893, 201597, 274533, 288765
Offset: 1

Views

Author

Amiram Eldar, Apr 11 2020

Keywords

Examples

			14 is a term since A333926(14) = A333926(15) = 24.
		

Crossrefs

Cf. A333926.
Analogous sequences: A002961, A064115 (nonunitary), A064125 (unitary), A293183 (bi-unitary), A306985 (infinitary).

Programs

  • Mathematica
    recDivQ[n_, 1] = True; recDivQ[n_, d_] := recDivQ[n, d] = Divisible[n, d] && AllTrue[FactorInteger[d], recDivQ[IntegerExponent[n, First[#]], Last[#]] &]; recDivs[n_] := Select[Divisors[n], recDivQ[n, #] &]; f[p_, e_] := 1 + Total[p^recDivs[e]]; recDivSum[1] = 1; recDivSum[n_] := Times @@ (f @@@ FactorInteger[n]); Select[Range[10^5], recDivSum[#] == recDivSum[# + 1] &]

A360358 Numbers k such that A360327(k) = A360327(k+1) > 1.

Original entry on oeis.org

714, 6603, 16115, 18920, 23154, 24530, 39984, 41360, 42789, 51204, 56814, 58190, 59619, 60995, 65229, 66605, 68034, 69410, 73644, 79304, 82059, 84249, 84864, 86240, 94655, 101375, 101694, 103070, 107304, 108680, 121374, 125510, 126125, 126939, 135128, 135354, 137329
Offset: 1

Views

Author

Amiram Eldar, Feb 04 2023

Keywords

Comments

Numbers k such that A360327(k) = A360327(k+1) = 1 are terms of A360357.

Examples

			714 is a term since A360327(714) = A360327(715) = 72 > 1.
		

Crossrefs

Similar sequences: A002961, A064115, A064125, A293183, A306985, A360359.

Programs

  • Mathematica
    f[p_, e_] := If[PrimeQ[PrimePi[p]], (p^(e+1)-1)/(p-1), 1]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; seq = {}; s1 = s[1]; n = 2; c = 0; While[c < 40, s2 = s[n]; If[s1 == s2 > 1, c++; AppendTo[seq, n - 1]]; s1 = s2; n++]; seq
  • PARI
    s(n) = {my(f = factor(n), p = f[,1], e = f[,2]); prod(i = 1, #p, if(isprime(primepi(p[i])), (p[i]^(e[i]+1)-1)/(p[i]-1), 1));}
    lista(nmax) = {my(s1 = s(1), s2); for(n=2, nmax, s2=s(n); if(s2 > 1 && s1 == s2, print1(n-1, ", ")); s1 = s2); }

A360359 Numbers k such that A360331(k) = A360331(k+1).

Original entry on oeis.org

69, 574, 713, 781, 2394, 2506, 5699, 5750, 6499, 6509, 8441, 19250, 26529, 32130, 36549, 38065, 41749, 41929, 43239, 48025, 50301, 53037, 53382, 59178, 59822, 61754, 66906, 67689, 70277, 71198, 81620, 94000, 100775, 119214, 124640, 127442, 134665, 153202, 154908
Offset: 1

Views

Author

Amiram Eldar, Feb 04 2023

Keywords

Examples

			69 is a term since A360331(69) = A360331(70) = 24.
		

Crossrefs

Cf. A360331.
Similar sequences: A002961, A064115, A064125, A293183, A306985, A360358.

Programs

  • Mathematica
    f[p_, e_] := If[PrimeQ[PrimePi[p]], 1, (p^(e+1)-1)/(p-1)]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; seq = {}; s1 = s[1]; n = 2; c = 0; While[c < 40, s2 = s[n]; If[s1 == s2, c++; AppendTo[seq, n - 1]]; s1 = s2; n++]; seq
  • PARI
    s(n) = {my(f = factor(n), p = f[,1], e = f[,2]); prod(i = 1, #p, if(isprime(primepi(p[i])), 1, (p[i]^(e[i]+1)-1)/(p[i]-1)));}
    lista(nmax) = {my(s1 = s(1), s2); for(n=2, nmax, s2=s(n); if(s1 == s2, print1(n-1, ", ")); s1 = s2); }

A324367 Numbers k such that s(k) = s(k+1) where s(k) is the sum of divisors of k that are larger than sqrt(k) (A238535).

Original entry on oeis.org

45, 62, 15795, 355022, 14257705, 28856174, 2324581982, 103321586193
Offset: 1

Views

Author

Amiram Eldar, Sep 03 2019

Keywords

Comments

a(9) > 2*10^11. - Giovanni Resta, Sep 06 2019

Examples

			45 is in the sequence since A238535(45) = A238535(46) = 69.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := DivisorSum[n, # &, # > Sqrt[n] &]; seq={}; s1 = 0; Do[s2 = s[n]; If[s1 == s2, AppendTo[seq, n - 1]]; s1 = s2, {n, 2, 10000}]; seq

Extensions

a(8) from Giovanni Resta, Sep 06 2019
Showing 1-10 of 20 results. Next