A048334 Numbers that are repdigits in base 9.
0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 20, 30, 40, 50, 60, 70, 80, 91, 182, 273, 364, 455, 546, 637, 728, 820, 1640, 2460, 3280, 4100, 4920, 5740, 6560, 7381, 14762, 22143, 29524, 36905, 44286, 51667, 59048, 66430, 132860, 199290, 265720, 332150, 398580
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..800
- Eric Weisstein's World of Mathematics, Repdigit.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,-9).
Programs
-
Mathematica
Union[Flatten[Table[FromDigits[PadRight[{}, n, d], 9], {n, 0, 40}, {d, 8}]]] (* Vincenzo Librandi, Feb 06 2014 *) Table[FromDigits[IntegerDigits[(n-9*Floor[(n-1)/9])*(10^Floor[(n+8)/9]-1)/9],9],{n,0,50}] (* Zak Seidov, Mar 15 2015 *) f[n_] := Block[{r = FromDigits[#, 9] & /@ (Table[1, {#}] & /@ Range@ n)}, Sort@ Flatten[Times[r, #] & /@ Range@ 8]]; f[6] (* Michael De Vlieger, Mar 15 2015 *) LinearRecurrence[{0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,-9},{0,1,2,3,4,5,6,7,8,10,20,30,40,50,60,70},47] (* Ray Chandler, Jul 15 2015 *)
-
PARI
lista(nn) = for (n=0, nn, if ((n==0) || (#Set(digits(n, 9)) == 1), print1(n, ", "))); \\ Michel Marcus, Mar 17 2015
Formula
G.f.: x*(1+2*x+3*x^2+4*x^3+5*x^4+6*x^5+7*x^6+8*x^7) / ( (x-1) *(1+x) *(x^2+1) *(3*x^4-1) *(3*x^4+1) *(x^4+1) ). - R. J. Mathar, Mar 14 2015
a(n) = 10*a(n-8) -9*a(n-16). - R. J. Mathar, Mar 14 2015
Sum_{n>=1} 1/a(n) = (761/35) * A248726 = 3.02323812974071904119... - Amiram Eldar, Jan 21 2022