A048395 Sum of consecutive nonsquares.
0, 5, 26, 75, 164, 305, 510, 791, 1160, 1629, 2210, 2915, 3756, 4745, 5894, 7215, 8720, 10421, 12330, 14459, 16820, 19425, 22286, 25415, 28824, 32525, 36530, 40851, 45500, 50489, 55830, 61535, 67616, 74085, 80954, 88235, 95940, 104081
Offset: 0
Examples
Between 3^2 and 4^2 we have 10+11+12+13+14+15 which is 75 or a(4).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Paul Barry, On the Gap-sum and Gap-product Sequences of Integer Sequences, arXiv:2104.05593 [math.CO], 2021.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
- Index entries for sequences related to sums of squares
Programs
-
Haskell
a048395 0 = 0 a048395 n = a199771 (2 * n) -- Reinhard Zumkeller, Oct 26 2015
-
Mathematica
Table[n(1+2*n(1+n)),{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,5,26,75},40] (* Harvey P. Dale, Nov 01 2013 *)
-
PARI
v0=[1,0,1]; M=[1, 2, 2; -2, -1, -2; 2, 2, 3]; g(v)=v[1]*v[2]*v[3]/(v[1]+v[2]+v[3]); a(n)=g(v0*M^n); for(i=0,50,print1(a(i),", ")) \\ Lambert Herrgesell (zero815(AT)googlemail.com), Dec 13 2005
Formula
a(n) = 2*n^3 + 2*n^2 + n.
a(n) = Sum_{j=0..n} ((n+j+2)^2 - j^2 + 1). - Zerinvary Lajos, Sep 13 2006
O.g.f.: x(x+5)(1+x)/(1-x)^4. - R. J. Mathar, Jun 12 2008
a(n) = A199771(2*n) for n > 0. - Reinhard Zumkeller, Nov 23 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=0, a(1)=5, a(2)=26, a(3)=75. - Harvey P. Dale, Nov 01 2013
E.g.f.: exp(x)*x*(5 + 8*x + 2*x^2). - Stefano Spezia, Jun 25 2022
Comments