cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048694 Generalized Pellian with second term equal to 7.

Original entry on oeis.org

1, 7, 15, 37, 89, 215, 519, 1253, 3025, 7303, 17631, 42565, 102761, 248087, 598935, 1445957, 3490849, 8427655, 20346159, 49119973, 118586105, 286292183, 691170471, 1668633125, 4028436721, 9725506567
Offset: 0

Views

Author

Keywords

Comments

Pisano period lengths: 1, 1, 8, 4, 12, 8, 6, 4, 24, 12, 24, 8, 28, 6, 24, 8, 16, 24, 40, 12, ... . - R. J. Mathar, Aug 10 2012

Crossrefs

Programs

  • Maple
    with(combinat): a:=n->5*fibonacci(n, 2)+fibonacci(n+1, 2): seq(a(n), n=0..26); # Zerinvary Lajos, Apr 04 2008
  • Mathematica
    a[n_]:=(MatrixPower[{{1,2},{1,1}},n].{{6},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
    LinearRecurrence[{2,1},{1,7},40] (* Harvey P. Dale, Jul 22 2011 *)
  • Maxima
    a[0]:1$
    a[1]:7$
    a[n]:=2*a[n-1]+a[n-2]$
    A048694(n):=a[n]$
    makelist(A048694(n),n,0,30); /* Martin Ettl, Nov 03 2012 */

Formula

a(n) = ((6+sqrt(2))(1+sqrt(2))^n - (6-sqrt(2))(1-sqrt(2))^n)/2*sqrt(2).
a(n) = 2*a(n-1) + a(n-2); a(0)=1, a(1)=7.
G.f.: (1+5*x)/(1 - 2*x - x^2). - Philippe Deléham, Nov 03 2008
a(n) = ((1+sqrt(18))(1+sqrt(2))^n+(1-sqrt(18))(1-sqrt(2))^n)/2 offset 0. a(n) = first binomial transform of 1,6,2,12,4,24. - Al Hakanson (hawkuu(AT)gmail.com), Aug 01 2009